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“Squeezed light” refers to non-classical states of the electromagnetic field in which the noise
at some phases is less than the noise of the vacuum state. These bewildering states manipulate
fundamental limits set by quantum mechanics and results in correlations between phases either at
the same mode frequency, or across two different mode frequencies. The EPR Paradox refers to
the puzzling property of quantum mechanics that for two particles which are entangled, or strongly
correlated, the physical state of one particle can be influenced by a measurement on the other. As
will be demonstrated, the strange quantum correlations present in both two-mode squeezed states
and the EPR paradox have a deep connection: the latter can be interpreted as a limiting case of
the former in which the degree of squeezing approaches infinity. Applications of this connection to
enhancing quantum sensing efficiency in LIGO are subsequently discussed.

I. SQUEEZED LIGHT

Quantum optics has discovered a myriad of non-
classical states which the electromagnetic field can oc-
cupy, one of which being the so-called “squeezed state”
[1]. In general, the notion of a squeezed state sim-
ply refers to a particular relationship between two non-
commuting observables of a physical state A, B where
[A,B] = iC. A fundamental limit set by quantum me-
chanics is the general Heisenberg Uncertainty Principle
(HUP) which these operators must obey [2]:

(AA((AB)%) = ZI{O) (1)
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Squeezed states denote states in which either Aor B
have an uncertainty that is less than the lower limit of
the HUP. These observables could range from position
and momentum to the quadratures of an electromagnetic
field. Squeezed states, therefore, have useful applications
to high precision measurements of an observable, such
as in quantum communication and quantum sensing [2].
In the context of quantum optics specifically, squeezing
can occur within a single electromagnetic mode or across
multiple modes, which we now discuss in more detail.

A. Single-Mode Squeezing

Consider first a single-mode electromagnetic field. Us-
ing the standard second quantization procedure, we can
parameterize the electromagnetic states by photon cre-
ation (raising) and annihilation (lowering) operators, af
and a, and define any arbitrary quadrature of the elec-
tromagnetic field as

Note that when § = 0 and 6 = 7, one recovers the famil-
iar real and imaginary quadratures, analogous to position
and momentum of the harmonic oscillator:

X, :?(9:0):%(%&) (3)
Xy = V(O =m) = %(a-a*) 4)

Alternatively, one can attain the amplitude and phase
quadratures of the single-mode field with frequency w by
choosing /2 = wt. Due to the anti-commutation rela-
tion [d,&*] = 1 the HUP uncertainty relation between
any two orthogonal quadratures is

(MK (A > o 5)

Notably, the vacuum state |0), the state with no pho-
tons, minimizes this uncertainty product: (0|(AY)2|0) =
1/4. Squeezed states, therefore, are states in which one
quadrature exhibits less noise fluctuations than vacuum
state [2].

A squeezed state |1hs,) = S|¢) is obtained from the
“squeezing operator”

S(r,0) = exp{ % (5*@2 —cat 2) } (6)

where ¢ = re?® quantifies both the degree of squeezing
r known as the squeezing parameter, and the direction
of squeezing along the quadrature Y (f). Single-mode
squeezing is often called quadrature squeezing for this
reason.

To demonstrate how the squeezing operator reduces
uncertainty in one quadrature, let us consider its action
on the single-mode vacuum state S’\O) Here we take
6 = 0 for convenience. To calculate the resulting vari-
ance in X 1, one needs to calculate expectation values of
a and a' with respect to the squeezed vacuum. Using
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Figure 1. Phase space diagram of single-mode squeezed vac-
uum. Middle circle is unsqueezed vacuum, and ellipse shows
squeezing in the amplitude quadrature and anti-squeezing in
the phase quadrature [3].

the Baker-Hausdorff Lemma [2], these operators trans-
form according to

5148 = acoshr — al sinhr (7)
Stats = at coshr — asinhr (8)

known as the “Bogoliubov transformation” [4].
Applying the same procedure to Xs, we arrive at the
variances

(AX1)?) = Je7™ (9)
(AX2)?) = Je* (10)

which demonstrates squeezing by a factor of exp(—2r)
in X; and anti-squeezing by exp(2r) in X, [2]. Figure 1
shows squeezed vacuum for the general case of 6 # 0.

The physical significance of the squeezing operator and
the Bogoliubov transformations can be understood from
two considerations. First, from eq. 6 one can see that the
photon creation and annihilation operators are quadratic,
implying that squeezing acts on photons in pairs. In fact,
one of the first formulations of squeezed states referred to
them as “two-photon coherent states” [5, 6] which obey
the linear transformations

b= pa + va, (11)
u?| = v? =1 (12)

Note that setting b = a,u = coshr, and v = sinhr is
a valid solution and recovers the squeezed state Bogoli-
ubov transformations of eqs. 7, 8. This demonstrates
that $|0) is the two-photon coherent state between the
vacuum and itself.

Second, because the squeezing operator is unitary, it
can be interpreted as a dynamical time-evolution opera-
tor of a Hamiltonian of the form

N ihy (2)

- ’; (a“‘ - a”) (13)
such that S(¢) = U(t,0) = eXp(—th/h) with & = 2y (2t
[2, 4]. Interestingly, this squeezing Hamiltonian is pre-

cisely equivalent to the Hamiltonian of spontaneous para-
metric down-conversion in a x(?) crystal, when treated in
the interaction picture. The classical nonlinear Maxwell
equations describing the degenerate parametric amplifier
are

IE, B zwlx(z)

_ E E* iAkz 14
0z 4k ! (14)

where ki,w; is the signal wave vector and frequency,

Ak = k3 — ko — kq, ¢ is the speed of hght and Ey, F5
are the signal and pump beams and Ey = §E1 for degen-
erate parametric amplification [7]. The solutions these
equations have the form

= Acosh(kz) + Bsinh(kz). (15)

which take the same general form as the Bogoliubov
transformations.

Therefore, we can view a single-mode squeezed state
as the signal beam produced in the x(?) nonlinear optical
process of degenerate parametric amplification. The Bo-
goliubov transformations when viewed in the Heisenberg
picture provides the corresponding dynamical evolution
of the mode operators @ and a' from this three-wave mix-
ing process. This very method has been used to produce
squeezed light in a variety of experiments [4]. It is worth
mentioning that squeezed light has also been produced
by other nonlinear mechanisms such as four-wave mixing
in x® materials [8].

B. Two-Mode Squeezing

Two-mode squeezing is an extension of single-mode
squeezing to creation and annihilation operators across
different field modes. Consider two different mode op-
erators a and ?), which obey the standard commutation

relation [d, I;T} = 0. The two-mode squeezing operator is

then defined as [2]
$2(6) = exp{¢"ab - ¢albt} (16)

Like S , S, exhibits pairing between creation and annihi-
lation operators. Although, one key difference for S is
that the squeezing is in the quadratures of the two-mode
system formed by a superposition of the underlying a and
b quadratures. The underlying a and b quadratures are
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Figure 2. Two-photon squeezed states corresponding to signal
and idler beams (green) produced by non-degenerate para-
metric down conversion in a x? crystal [9].

not necessarily squeezed. These superposition quadra-
tures are defined as

5 1 75 . 1 PO
ab a b\ _ ~ ~F T
Xab = ﬁ(Xl +X7) = 7 (a+af+b+01) (17)

. 1 N N
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where the letter superscripts refer to the X, and X
quadratures given by egs. 3 and 4 for modes a and b
[2].

To demonstrate the effect of two-mode squeezing, we
again consider the “two-mode squeezed vacuum state”
(TMSV): 5210,0). Following a similar procedure as in
section I with 8 = 0, we again obtain a similar Bogoliubov
transformation:

§2Td§2 = acoshr — b sinhr (19)

m(afauz}fiﬁ) (18)

§2T5§2 = bcoshr — af sinhr (20)

The resulting variances of the superposition quadratures
calculated with respect to the TMSV have exactly the
same form as eqs. 9, 10:

(AX§?) = je (21)
(AXg)?) = Je (22

This squeezing of superposition quadratures implies that
some of the underlying a and b quadratures become cor-
related.

Let us now also interpret the physical significance of
the two-mode squeezing operator. The importance of
the correlations between photon pairs becomes even more

apparent in the case of two-mode squeezing. Most obvi-
ously, the Taylor expansion of S,

Sa(€) = 1+ ¢*ab — a'dt + %(5*&6 —&afbh)? + ... (23)

explicitly reveals that two-mode squeezed states are al-
ways acted on by pairs of ab or atb. Moreover, one can
decompose the TMSV into the number basis by calculat-
ing its inner product with coherent states to obtain

. 1 &
S210,0) = g g (=1)" tanh™ r |n, n) (24)
n=0

Evidently, this formulation reveals that the only states
which emerge in a superposition to construct the TMSV
state are those which are pairs of equal number of pho-
tons in the & and b modes [2].

In addition, gg, like S , can also be viewed as the time-
evolution operator to a specific Hamiltonian which is bi-
linear in the mode operators of the form

H = il ® (al} - aTBT) (25)

where now, for # = 0, the time evolution scales as
r = x?¢. This Hamiltonian again corresponds to a x(?)
process of parametric downconversion. However, the key
distinction between this production mechanism as com-
pared to single-mode squeezed states is that two-mode
squeezing require non-degenerate parametric downcon-
version. In this case, wy # %wl and the signal and idler
beams are distinguishable, as shown in figure 2. In fact,
any quadratic or bilinear Hamiltonian can produce two-
mode squeezing [4, 5]. This arises from the fact that
squeezed state wave functions are two-mode Gaussian,
and linear transformations on Gaussian states produce
other Gaussians [10].

From both single-mode and two-mode squeezed states,
we have shown that the physical significance of squeezing
is three-fold: (1) it always acts on photons in pairs, (2)
it can be viewed as a dynamical process that can be engi-
neered in a lab, and (8) it produces correlations between
observable quadratures. These attributes pave the way
for a connection between two-mode squeezing and entan-
glement in the EPR paradox, which we now explore.

II. EPR PARADOX AND TWO-MODE
SQUEEZING

A. The EPR Paradox

In a seminal paper in 1935, Einstein, Podolsky, and
Rosen (EPR) argued that quantum mechanics leads to
a paradoxical result, and therefore cannot be a complete
theory [11]. To arrive at this paradox, EPR consider two
systems consisting of a single free particle prepared sep-
arately by two observers Alice and Bob, which interact



for some finite time. The resulting states of the two par-
ticles can then be determined when Alice or Bob makes a
projective measurement to collapse the two-system wave
function onto either of their position or momentum bases.

Suppose Alice makes a position measurement on her
particle without disturbing Bob’s system. Because the
position states of Alice and Bob’s particles are assumed
to be maximally correlated from their interaction, Al-
ice’s measurement will then determine with certainty the
position of Bob’s particle. Similarly, if Alice had instead
made a momentum measurement, then the momentum of
Bob’s particle would be determined with equal certainty.
In other words, the resulting position and momentum
wavefunctions of the two-particle system after the mea-
surements yield

\I/(XmXb) = 6(Xa - Xb) (26>
(P(Pcupb) :6(Pa+Pb) (27)

where the signs are determined by the eigenvalue rela-
tions between position and momentum. These are re-
ferred to as “EPR states” in contemporary literature
[4, 6, 12, 13].

Hence, the arbitrariness in Alice’s choice of measure-
ment indicates that Bob’s particle has both a definite po-
sition and momentum; the above two wavefunctions cor-
respond to the same physical reality. However, according
the HUP, this is impossible since position and momentum
operators do not commute. Thus, we arrive at a para-
dox: quantum theory and the philosophical theory of lo-
cal realism are mutually incompatible. “Locality” refers
to the belief that space-like separated events should have
no causal impact on each other. “Realism” refers to the
belief that observables of physical systems have objective
reality and are not measurement-dependent [12].

B. EPR States as Two-Mode Squeezed Vacuum
States

Given that the two-mode squeeze states exhibit
strong correlations between two distinguishable and non-
commuting quadratures, it is natural to ask whether
there exists a connection between these states and EPR
states. Indeed, the position and momentum operators of
both Alice and Bob’s system are analogous to the X; and
X5 quadratures of the the ¢ and b modes of the TMSV
discussed in section I

X, — X7 (28)
X, — X? (29)
P, — X§ (30)
P, — X3 (31)

Let us now consider a different superposition quadra-
ture of the two-mode state defined by the difference of

the “position” quadratures

1 75 5 1
A= %) =5
If we compute the variance of this difference superpo-
sition quadrature with respect to the TMSV, we obtain
a similar form of Bogoliubov transformations which can
be viewed as the time-evolution of the non-degenerate
parametric downconversion Hamiltonian,

(a +at—b— iﬂ) (32)

a(t) = Sy @Sy = a(0) coshr + ¢%T(0) sinhr  (33)
b(t) = S5 5Ss = b(0) coshr + ¢9a (0) sinhr  (34)

where again r(t) = Y@t and 6 is left arbitrary here for
completeness [2, 4]. To analyze the variance along the
position-analog quadratures, we set # = 0. Substituting

the resulting eqs. 33 and 34 into g;%(f(f — Xf) S,
we observe that

1 /4 . 1 /4 N
—= (Xr@ £ £20) = = (X1(0) £ X1(0) )= (35
(X0 =x10) = (MO £ 20)* 39)
where we have also included the time-evolution of the po-
sition sum superposition quadrature as well. Similarly, if
we set # = 7 to determine the variance in the momentum-
analog quadratures, a similar calculation produces

1 1
V2 V2

Evidently from eqgs. 35 and 36, as time evolves (or equiv-
alently as the squeezing parameter r increases) the two-
mode squeezing operator correlates the position quadra-
tures and anti-correlates the momentum quadratures of
the a and b modes [4]. That is,

(X5(0) £ X50)) = == (X5(0) £ X3(0) )™ (36)

(RS~ D)) = Fe (37
(XS + X)) = 2o (39)

where the opposite signs indicate the correlation and
anti-correlation.

For r(t = 0), the above superposition quadratures are
uncorrelated. But as r(t — o0), they recover the EPR
states of eqs. 26, 27; the uncertainty in the difference
between the position-analog quadratures and in the sum
of the momentum-analog quadratures approaches zero.
The EPR states, therefore, are a limiting case of two-
mode squeezed states.

This conclusion can also be seen from the wave func-
tions of the TMSV, which are two-mode Gaussian pack-
ets. The position wave function is

1
U(2g,xp) = —— exp(_e—27-(xa + l’b)2/4) X

V21
exp(—e* (zq — x5)?/4) (39)
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Figure 3. Mathematica simulations of the time-evolution of the TMSV position wavefunction (eq. 39) probability density. At
t = 0, the state initially begins as the unsqueezed two-mode vacuum state then as the r(t) evolves, z, and x, become increasing
correlated and the wavefunction recovers the EPR state (eq. 26) as shown for (a) r =0, (b) » =1, and (¢) r = 5.

where z, and x;, are the eigenvalues of X i and X b re-
spectively. Figure 3 shows the evolution of the probabil-
ity density of TMSV position wave function over time,
which exactly approaches the EPR position wave func-
tion of eq. 26. The momentum wave function ®(p,, ps)
would exhibit anti-correlation between the momentum-
analog quadratures of the TMSV as predicted by the
EPR state of eq. 27 as well [4].

In fact, recent studies suggest that any two-mode
Gaussian state can be passively transformed to a class
of states which saturate a quantity called the “entangle-
ment potential” [10]. Passive transformations refer oper-
ations achievable by linear optics, and the entanglement
potential is a measure of the highest degree of entangle-
ment from such passive transformations. Li et al. [10]
conjecture, therefore, an equivalence between a measure
of entanglement potential and a measure of squeezing.
This conjecture dictates that the degree of maximal en-
tanglement for a two-mode continuous variable system,
such as the EPR states, is entirely determined by the
degree of squeezing between those two states. Since the
degree of two-mode squeezing can be engineered through
non-degenerate parametric down-conversion, this opens
the door to manufacturing entangled state in the lab to
provide direct tests of the EPR paradox.

C. Experimental Tests of the EPR Paradox Using
Squeezed States

The most common production mechanism of the two-
mode squeezed states has been non-degenerate paramet-
ric downconversion, specifically Type II in which the
points of overlap between the signal and idler cones cor-
respond to entangled photons (see Fig. 2) [12, 14]. One

method for achieving the high squeezing parameter r nec-
essary for the EPR states is to place x(?) crystals back-
to-back, as this method has been shown to mitigate the
need for phase-matching and produces a homodyne to-
mography of the reconstructed EPR state with a fidelity
of 98% [14]. Methods such as this one have been used
to perform tests of the EPR paradox, resulting in the
conclusion that local realism is false.

One cornerstone experiment performed by Ou and
Mandel [15] was one of the first to explicitly make use of
parametric down conversion. Their experimental setup
consisted of shining a 351.1 mm argon-ion laser pump
beam onto a potassium dihydrogen phosphate nonlinear
crystal, and subsequently using a beamsplitter to direct
the signal and idler beams onto different photodetec-
tors for coincidence measurements. Any measurement
for which ((AX%)2)((AX%)2?) < 2 would indicate a vio-
lation of local realism and classical probability relations
for waves, and their results show a minimal value of
0.7 £0.001 [6, 15].

More recently, Zeilinger et al. also used an argon-ion
laser pump on a Type II non-degenerate BBO crystal to
provide a direct test of another inequality called “Bell’s
inequality” [16]. Bell’s inequality was formulated to pro-
vide a concrete experimental measure for testing the EPR
paradox [17]. Their setup improved upon a similar ex-
periment by Aspect et al. [18] by closing loopholes such
as making the two observers space-like separated. They
likewise find a violation of Bell’s inequality and therefore
local realism.



IIT. APPLICATIONS OF EPR TWO-MODE
SQUEEZING TO METROLOGY

A. LIGO

Beyond providing tests of the nature of quantum me-
chanics, squeezed light has played a vital role in enhanc-
ing quantum sensing precision measurements for funda-
mental physics. One prime example is the Laser Interfer-
ometer Gravitational-Wave Observatory (LIGO), which
searches for low-frequency gravitational waves using a
4km Fabry-Perot interferometer [19]. The presence of
a gravitational wave perturbs the cavity length in the
arms of the interferometer, and this strain force h can
be measured with an intensity correlation measurement.
To achieve sensitivity to the critical frequency band of
around 150-300Hz, LIGO needed operate below the Stan-
dard Quantum Limit (SQL), which is the lower limit of
their optomechanical HUP relation:

1

Ahgsor = ——
SQL ™ Uki|a|

(40)
where | = 4km, k is the wave vector, and |a] is the
amplitude of the beam [20].

The two main noise sources for gravitational wave in-
terferometers are 1) photon shot noise and 2) radiation
pressure noise, which result from fluctuations in the pho-
ton counting statistics and the pressure exerted on the
cavity mirrors by the field vacuum, respectively. These
two noise sources diminish sensitivity to the 1) phase and
2) amplitude quadratures of the interferometer beam.
Radiation pressure noise dominates in the high-frequency
regime wherein well-motivate astrophysical events occur
[20]. As such, LIGO injected single-mode phase-squeezed
vacuum produced by a x process called Optical Para-
metric Oscillation (OPO) into the dark port of their in-
terferometer, which improved their high-frequency sensi-
tivity by 2.15dB [19].

To improve upon this result, the newest experi-
mental version called “Advanced LIGO” is employing
frequency-dependent squeezing to reduce the uncertainty
in the phase quadrature for high-frequencies while re-
ducing uncertainty in the amplitude quadrature for low-
frequencies. While still only injecting vacuum squeezed
in one quadrature, Advanced LIGO introduces an ad-
ditional 300m cavity that is detuned from the interfer-
ometer resonance in order to filter the injected squeezed
vacuum. The filter cavity introduce a phase shift that
rotates squeezed states for frequencies detuned from
the cavity resonance. The use of frequency-dependent
squeezing resulted in a general enhancement of detection
efficiency by 15-18% compared to no squeezing as shown
in figure 4. However, the addition of of the filter cav-
ity introduced additional optical losses from both cavity
losses of the injected squeezed vacuum and readout losses
from misalignments in the filtered beam path [21].
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Figure 4. Results of frequency-dependent squeezing in Ad-
vanced LIGO [21]. Enhanced sensitivity across the entire
parameter space shown in purple for frequency-dependent
squeezing.

B. Prospects of EPR Two-Mode Squeezing in
Advanced LIGO

At this point, we pause to notice that LIGO has thus-
far only implemented single-mode squeezed light. Based
on the connection established in section II between EPR
states and two-mode squeezed states, we now consider
how the use of two-mode squeezing and entanglement
could enhance LIGQO’s frequency-dependent squeezing
sensitivity. Instead of introducing an extra cavity, one
can prepare a TMSV with correlations tuned to the de-
sired frequency with using non-degenerate Type II para-
metric down conversion, such as the technique mentioned
previously of positioning two x(?) crystals back-to-back
[14].

Specifically, one can achieve the non-degeneracy by
setting the signal mode frequency as wy and idler fre-
quency as wg + A, where A = O(M H z). This frequency
difference produces an entanglement between the result-
ing sidebands £ of the signal and idler modes @ and b.
These two operators can be characterized according to

G+ — wo + O (41)
by = wo+A+Q (42)

The frequency-shifted idler mode b will then see the
LIGO interferometer as a detuned cavity and therefore
acquire a frequency-dependent rotation set by A. Then
with two separate homodyne measurements of the signal
and idler beams, a measurement on a quadrature of the
idler mode will squeeze the corresponding quadrature in
the signal mode, in line with the EPR correlations from
the two-mode squeezed state. This approach has been
referred to as “conditional frequency-dependent squeez-
ing” since the quadrature squeezing in the signal mode
is conditional on the measurement outcome on the idler
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Figure 5. Conditional frequency-dependent EPR squeezing
schematic for LIGO. Entanglement is generated between the
wo £ Q and wo + A & side bands of the two-mode squeezed
state. A measurement on a quadrature of the idler b will
squeeze the corresponding quadrature in the signal a [13].

mode by an amount of e=2" (see figure 5) [13, 22].

This approach has potential to result in a gain of 11-
12dB in sensitivity from the SQL, and an improvement of
6dB on the current Advanced LIGO frequency-dependent
method in frequency regions where optical losses are
around 5% [13]. The major benefit would be to com-
pletely avoid any optical cavity losses that are currently
present from using additional filtering cavities to achieve
the frequency-dependence. Moreover, one has greater
control in tuning the frequency dependence simply by
adjusting A. However, since the signal and idler modes
now require separate homodyne measurements, the read-
out optical losses will double. As LIGO collects more
data, it will therefore be important to discern which form
of optical loss is more prevalent, and if the cavity loss
dominates, then the EPR two-mode squeezing approach
would improve frequency-dependent squeezing sensitivity
[13, 22].

IV. CONCLUSION AND OUTLOOK

By analyzing the physical significance of squeezing,
we have demonstrated the profound connection be-
tween two-mode squeezing and maximally entangled
EPR states. That is, EPR states can be seen as a special
case of two-mode squeezed states wherein the squeezing
parameter approaches infinity. The fact that two-mode
squeezing can be dynamically realized through a x(?
nonlinear optical process of non-degenerate parametric
down-conversion has enabled direct experimental tests
of the foundations of quantum mechanics, and enabled
the use of entanglement as a resource to conduct high-

precision measurements such as in LIGO.

More generally, generating a network of entangled de-
tectors has promising potential for revolutionizing op-
tomechanical sensing [23]. Demonstrations of an entan-
gled network of table-top cavity optomechanical sensors
similar to the style of LIGO have demonstrated a 25% en-
hancement in detection efficiency compared to classical
systems, and specifically a 40% enhancement in reduc-
ing shot-noise. According to the central limit theorem,
accumulating measurements over M different entangled
beams and sensors will reduce the power spectral density
by 1/v/M. Accordingly, an array of M > 2 EPR entan-
gled beams from multi-mode squeezing may be useful to
consider for future implementations of LIGO and other
force-sensing cavity optomechanics experiments. Future
prospects of squeezed state-generated entanglement to
search for new fundamental physics should continue to
be explored in metrology such as for searching for BSM
particles like the axion [23] or sterile neutrino [24], and
in future gravitational wave interferometers [22].
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