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The discovery of black hole thermodynamics led to two fascinating results: Hawking Radi-

ation and the Unruh Effect. We provide the QFT-in-curved-spacetime derivations for both,

considering both a Bogoliubov transformation and Wick rotation approach. Both Hawking

radiation and the Unruh effect dictate that observers in highly gravitational or non-inertial

settings will measure thermal radiation, and we provide a comparative interpretation which

unifies them through the presence of a bifurcate Killing horizon: both phenoemna boil down

to a time translation symmetry between two coordinatizations generated by the bifurcate

horizon.
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I. INTRODUCTION

Fascinating effects can can be discovered when analyzing quantum field theory (QFT) in curved

spacetime. Among them, two of the most surprising are Hawking radiation and the Unruh effect.

By considering how quantum fields scatter off a black hole, Stephen Hawking calculated that

black holes radiate a blackbody spectrum of particles, and therefore evaporate. William George

Unruh showed that an accelerating observer in Minkowski spacetime will similarly experience a

thermal bath of particles. Both effects indicate that observers in non-inertial settings will experience

thermality. In this paper we derive both of these effects, and further argue that their underlying

similarity is a result of a more fundamental time translation symmetry between “inertial” and

“Killing” time common to both. Specifically, we show that the presence of a bifurcate Killing

horizon is at the core of two approaches for calculating these effects—a Bogoliubov transformation

between vacuua, and a Wick rotation—and results in the first law of black hole thermodynamics.

The paper is organized as follows. First we provide a brief overview of classical black hole

thermodynamics in section II to motivate Hawking’s calculation. Then we derive the Hawking

radiation in section III, following Hawking’s original semi-classical approach. Subsequently, we

present the Unruh Effect in section IV and compare it to Hawking radiation in section V. Therein,

we provide a unified interpretation in terms of “bifurcate Killing horizons.” In this paper we will

use units c = ℏ = GN = 1 unless explicitly stated.

II. OVERVIEW OF BLACK HOLE THERMODYNAMICS

During the 1970s, Hawking, Bekenstein and collaborators pioneered a series of discoveries that

black holes exhibit behavior analogous to thermodynamic properties [1–3]. To illustrate this point,

let us consider a stationary Kerr black hole which has the metric

ds2 = −
(
1−2Mr

ρ2

)
dt2−2Mar sin2 θ

ρ2
(dtdϕ+dϕdt)+

ρ2

∆
dr2+ρ2dθ2+

sin2 θ

ρ2
[
((r2+a2)2−a2∆sin2 θ

]
dϕ2

(1)

where ∆(r) = r2−2Mr+a2, ρ2(r, θ) = r2+a2 cos2 θ, and a = J/M [4]. A stationary system is one

that has no explicit time dependence, which is an apt choice to analyze equilibrium thermodynamic

properties. Much like thermodynamic systems, a Kerr black hole is entirely characterized by set of

physical parameters—mass M , angular momentum J , surface gravity κ—so we might expect there

to be some correspondence with quantities such as energy, temperature, and entropy.

Indeed, one can derive an analogous “first law of black hole thermodynamics.” One approach

is to consider the irreducible mass of the black hole defined by M2
irr = 1

2(M
2 +

√
M4 − J2) [4].

Computing the exact differential δMirr

δM =
κ

8π
δA+ΩHδJ (2)

where κ is the “surface gravity” of the black hole (defined momentarily), A is the area, ΩH is the

angular velocity, and J is the angular momentum, as was originally derived in [5]. Noting the close
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correspondence between equation (2) and the first law of thermodynamics

dE = TdS − PdV, (3)

we can associate M with E, S with A, T with κ/8π, P with ΩH , and J with V . Equation 2 is

therefore called the “first law of black hole thermodynamics,” which we will return to and derive

more rigorously in section V.

Equation (2) also aligns with the second law of thermodynamics in light of the “area theorem,”

which states that the area of the a black hole is nondecreasing [6, 7]. Since A is associated with S,

one recovers the “second law of black hole thermodynamics”

δA ≥ 0 ⇐⇒ δS ≥ 0. (4)

These results can also be extended to Kerr-Newman (rotating and charged) black holes, in which

the charge acts like a chemical potential term [6, 8]. They have also been analyzed in various

spacetimes, such as de Sitter [9].

The identification of temperature with surface gravity κ will be a central focus of this paper.

The surface gravity of a black hole defines the failure of a Killing parameter corresponding to an

isometry (e.g. time translation symmetry) to be affine on a horizon. If a given Killing vector χµ is

normal to a null hypersurface Σ, then Σ is called a Killing horizon of χµ [4, 6]. Since on this surface

χµχµ = 0, the vector ∇ν(χµχµ) must be normal to Σ and therefore parallel to χν [7]. Therefore,

to every Killing vector on a Killing horizon, we can associate a constant of proportionality known

as the “surface gravity” κ satisfying

∇ν(χµχµ) = −2κχν (5)

Using Killing’s equation ∇(µχν) = 0 and the fact that χµ is normal to Σ so χ[µ∇νχσ] = 0, the

surface gravity can be defined via

κ2 = −1

2

(
∇µχν

)(
∇µχν

)
. (6)

Why physically might we expect that κ is related to T? As pointed out by Wald [7], the

connection is reinforced when considering the analog of the zero’th law of thermodynamics: for an

object in equilibrium, the temperature must be uniform over all parts. Similarly for a stationary

black hole, the surface gravity κ will be uniform over the entire area [6]. For a spherical black

hole, this follows from Birkhoff’s theorem which asserts that any spherically symmetric solution to

Einstein’s equations will be static, and therefore have a timelike Killing vector χµ that is orthogonal

to a family of hypersurfaces [4]. Another qualitative motivation for this correspondence is that in

thermodynamics, temperature quantifies the stubbornness of a system to give up energy [10], and

the surface gravity defines the resistance of a Killing parameter to be affine.

Thus, we see that there are close mathematical correspondences between three laws of black

hole and ordinary thermodynamics. If these correspondences entail equivalence, then κ would truly

yield a physical temperature of the black hole1. It was not until Hawking’s infamous calculation

in 1975 [12] that made the physical, quantum mechanical connection between κ and T robust.

1 This view has been advocated by Wald [6] and recently by Almheiri et al. [11] in what they call the “central

dogma:” when viewed from the outside, a black hole is as an ordinary quantum mechanical system, obeying the

laws of thermodynamics.
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III. HAWKING RADIATION

Hawking discovered that a black hole does not only absorb particles, but also emits particles

as if it were a hot object with temperature TH = κ/2π [12]. We now present Hawking’s original

“semi-classical” derivation of this result, which relies on analyzing quantum field theory in classical

curved spacetime. The perspective Hawking adopts is to view the interaction between the black

hole and the quantum fields as a scattering problem. In particular, the overall goal is to calculate a

quantity analogous to the S-matrix, relating the quantum field vacuum at very early times to the

vacuum at very late times after scattering off the black hole.

Specifically, we start by considering a static Schwarzschild black hole formed by stellar collapse,

with metric

ds2 = −
(
1− rs

r

)
dt2 +

(
1− rs

r

)−1
dr2 (7)

where rs = 2M is the Schwarzschild radius and where we have neglected the r2dΩ2 angular com-

ponent. Around this classical black hole, we introduce a quantum scalar field ϕ which satisfies the

Klein-Gordon equation

(□−m2)ϕ(r, t) = 0 (8)

where □ = ∇µ∇µ = 1√
−g
∂µ(

√
−ggµν∂ν) is the D’Alambert operator for the Schwarzschild metric

gµν , and g = det{gµν} [13]. For simplicity, we will consider a massless scalar field (however these

results have been shown to hold for the massive case and for Dirac fields; see [14]).

Normally if we were in flat spacetime, we would be able to unambiguously define initial condi-

tions to determine the positive frequency modes of this field by the constraint

∂tϕ
+ = −iωϕ+, ω > 0. (9)

However, in curved spacetime, there is no covariant notion of positive frequencies. This is because

the condition (9) relies on a timelike Killing vector ∂t, but its existence is not guaranteed in curved

spacetime and moreover there could be many possible hypersurfaces on which to define this Killing

vector [4, 12, 15]. In the case of the Schwarzschild metric (7), there is no t dependence so there will

be a timelike Killing vector in line with Birkhoff’s theorem, but we need to specify on which null

surface it is defined. This time translation symmetry will become crucial to the present analysis.

A. Schwarzschild and Kruskal Coordinates

To draw out this effect more explicitly, let us consider two possible coordinatizations of the

Schwarzschild black hole: the “Schwarzschild” and “Kruskal” coordinates. For r → rs, the metric

(7) diverges so we can introduce a coordinate system better equipped to analyze causal structure

of geodesics approaching the horizon. To do so, we consider the behavior of null rays by setting

ds2 = 0 and solving the resulting differential equation

dt

dr
= ±

(
1− r

rs

)−1
(10)



4

to obtain t = ±r∗, where r∗ is the “tortoise coordinate” given by [4]

r∗ = r + rs log
( r
rs

− 1
)

(11)

up to a constant depending on rs and a reference radius r0. Effectively, this calculation slows down

the time coordinate of the null ray so that we can “catch up” to it to see how it behaves as it

approaches the event horizon before it diverges. One can then define the corresponding coordinates

of a null ray in this parameterization,

v = t+ r∗ (12)

u = t− r∗ (13)

where u is the “retarded” time of an outgoing null ray moving towards r → ∞ and v is the “ad-

vanced time” of an ingoing ray moving towards r → 0. We will refer to (u, v) as the “Schwarzschild”

coordinates. The metric in the Schwarzschild coordiantes becomes

ds2 = −
(
1− rs

r

)
dudv. (14)

While the Schwarzschild coordinates fix the divergence as r → rs, the metric (14) vanishes and

equivalently the horizon becomes effectively infinitely far away at either v = −∞ or u = ∞ due to

the divergence of the tortoise coordinate. We can therefore define a further global coordinate system

to better analyze the transition of geodesics across the horizon. We do this by exponentiating,

V = ev/2rs = e(r
∗+t)/2rs (15)

U = −e−u/2rs = −e(r∗−t)/2rs (16)

where (U, V ) are the globally extended version of null coordinates (u, v) known as the “Kruskal

coordinates” [4], which give a well-behaved metric at rs of the form

ds2 = −16M3

r
exp

(
− r

rs

)
dUdV (17)

The Penrose diagram for a maximally extended Schwarzschild black hole is then obtained from a

conformal transformation on these Kruskall coordinates as shown in figure 1 (a). The Schwarzschild

coordinates are defined only in region I of the Penrose diagram since they are related to U, V by a

logarithm [4, 6]. In the case of gravitational collapse, only the region outside of the matter shell

in region I has a physically relevant coordinatization (figure 1 (b)).

B. Bogoliubov Transformation

Now, returning to field ϕ, we can perform two equivalent mode decompositions corresponding

to the field state either before or after the black hole scattering:

ϕ =
∑
i

fiai + f∗i a
†
i

=
∑
i

pibi + p∗i b
†
i + qici + q∗i c

†
i .

(18)
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Figure 1: Penrose diagrams of a Schwarzschild black hole (BH). (a) Full Penrose diagram from

extended Kruskal coordinates. (b) BH formed by stellar collapse. Shown in grey are the modes

f, p, q. Shown in dotted lines are the modes p
(1)
ω and p

(2)
ω . (c) Schematic of parallel transport

procedure for calculating p
(2)
ω .

The {fi}modes have positive frequencies with respect to I− and represent null rays ingoing towards

the black hole from past null infinity. The natural affine time parameter on I− is the advanced

Schwarzschild time v so we can define the spherically symmetric positive frequency ingoing modes

as

fω =
1

4π
√
ω

e−iωv

r
. (19)

The modes {pi} have positive frequencies with respect to I+ and represent outgoing particles from

the black hole towards future null infinity. In this case, the natural affine parameter is the advanced

Schwarzschild time u so we can similarly define outgoing positive frequency modes by

pw =
1

4π
√
ω

e−iωu

r
. (20)

Lastly, the modes {qi} represent particles falling into the black hole so to avoid discussing phe-

nomena inside the black hole, we leave the positive frequency definition unspecified, but declare

that they never intersect I− or I+. The mode operators satisfy the usual commutation relations:[
ai, a

†
j

]
=

[
bi, b

†
j

]
=

[
ci, c

†
j

]
= δij [12, 16, 17]. From the two decompositions of ϕ in (18), one can

define two different vacuua which we call the “in” and “out” vacuum,

ai |0⟩in = 0, bi |0⟩out = ci |0⟩out = 0. (21)

The Schwarzschild metric provides an effective scattering potential between these two vacuua.

This can be seen by considering the action I of ϕ in a Schwarzschild spacetime, which in terms of

the tortoise coordinate r∗ becomes

I = −1

2

∫
d4x

√
ggµν∂µϕ∂νϕ =

∫
dtdr∗

1

2

(d(ϕr)
dt

)2
−
(d(ϕr)

dr∗

)2
− Veff(r) (22)

where

Veff(r) =
(
1− rs

r

)( l(l + 1)

r2
+
rs
r3

)
. (23)
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(a) Veff(r) (b) Veff(r
∗)

Figure 2: Veff for various angular momenta: l = 0 (blue), l = 1 (orange), l = 2 (green), l = 3(red),

with rs = 2, G =M = 1. (a) Parametrization via r exhibits an expected divergence as r → 0.

(b) Parametrization via the tortoise coordinate r∗ smoothly extends the potential past r∗ → 0.

and l is the angular momentum of a mode of the field [18]. Figure 2 shows Mathematica plots of

Veff as a function of r and r∗. An incoming mode from I− with energy less than Veff(r
∗
max) can

either be reflected by the hump in figure 2b or tunnel through it into the black hole interior.

In the S-matrix formulation of this scattering problem, we only need consider the transition

amplitude between |0⟩in at I− and |0⟩out at I+, where an asymptotic observer could measure the

effects of the scattering. Therefore, only the f and p modes of (18) will become relevant to derive

thermodynamic properties of the black hole when viewing it from the outside. The goal is to now

relate the two vacuua |0⟩in and |0⟩out by relating the a and b mode operators.

To do so, we first note that as a result of the scattering process, we should be able to express

the outgoing modes as linear combinations of the ingoing modes

pi =
∑
j

αijfi + βijf
∗
j . (24)

We can derive a constraint on these coefficients αij and βij by considering orthogonality conditions

required by the “Klein Gordon (KG) norm.” For any two scalar field components ϕ1, ϕ2 with initial

conditions determined on a Cauchy hypersurface Σ, the KG norm defines an inner product of the

form

(ϕ1, ϕ2) = −i
∫
Σ
dΣµ

(
ϕ1∂µϕ

∗
2 − ϕ∗2∂µϕ1

)
(25)

which, for a field ϕ decomposed into components {ϕi}, enforces the following orthogonality condi-

tions [4, 6, 17]

(ϕi, ϕj) = −(ϕ∗i , ϕ
∗
j ) = δij , (ϕi, ϕ

∗
j ) = 0. (26)

Applying the orthogonality conditions to ϕi = fi or ϕi = pi and using the form (24) for pi, we see

that αij and βij must satisfy the following relations

αij = (pi, fj), βij = −(pi, f
∗
j ) (27)∑

j

|αij |2 − |βij |2 = δij . (28)
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Moreover, the same orthogonality conditions can be used to define a similar linear combination as

we had before but between the “out” and “in” mode operators bi and ai,

bi =
∑
j

α∗
ijaj − βija

†
j . (29)

A relation such as (24) between different field modes satisfying equations (27-29) is known as a

“Bogoliubov transformation” [4, 6, 17, 19].

How might we determine the alleged temperature of the black hole in this scattering formalism?

The insight by Hawking was to calculate the expected number of outgoing particles Nbi = b†ibi

with respect to the ingoing vacuum using (29):

⟨0in|b†b|0in⟩ =
∑
j

⟨0in|(αija
†
j − β∗ijaj)(α

∗
ijaj − βija

†
j)|0in⟩

=
∑
j

|βij |2 (30)

since the only non-vanishing term comes from ⟨0in||βij |2aja†j |0in⟩. Evidently, this Bogoliubov

transformation between |0⟩in and |0⟩out is at the core of Hawking’s derivation. While tedious, it is

in this calculation of the Bogoliubov coefficient βij where the surface gravity κ directly makes its

appearance.

C. The Result: Calculation of βij

To calculate αij and βij we need to use equation (27), which requires an explicit form of pi. To

avoid analyzing interior modes of the black hole, Hawking uses a clever trick of considering the

scattering process in reverse 2: we consider a mode pω with frequency ω propagating backwards

from I+ towards the black hole, which will have a two components pω = p
(1)
ω + p

(2)
ω . The p

(1)
ω

component gets reflected by the Schwarzschild effective potential and p
(2)
ω tunnels through it, both

ending up at I− as shown in figure 1 (b) [12].

The component p
(1)
ω will elastically scatter and therefore contribute δ(ω−ω′) to the α component

of pω in (24). To analyze the second component, we consider two neighboring p
(2)
ω modes at times

u and u + ϵ for small ϵ > 0. We set u to be very close to the horizon H+, which corresponds to

its reflected component on I− being very close to v0, the time after which any ingoing null ray

falls into the black hole (see figure 1 (c)). There will be a normalized Killing vector ηα orthogonal

to the horizon which connects these two rays via −ϵηα. As a proxy for considering the effect of

the scattering location r = 0 on −ϵηα, we can instead imagine that we are in the global Kruskal

extension of the Penrose diagram and parallel transport −ϵηα along the horizon back to where H+

intersects H− at V = U = 0. Let λ be the affine parameter on H−. This parallel transport trick

allows us to identify dx(λ)α

dλ = ηα for a geodesic x(λ)α and relate the retarded Schwarzschild time

u to λ via

du

dλ
=

−rs
λ

= − 1

κλ
(31)

2 This point of view is analogous to viewing a scattered electron as a positron moving backwards in time.
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where the factor of −rs comes from (16) and for a Schwarzschild black hole κ = 1
2M = 1

rs
. Solving

this equation yields u = − 1
κ ln(λ) as expected. Therefore, deviating the u+ ϵ geodesic to u along

H− will result in λ = ϵ,

u = −1

κ
ln(ϵ). (32)

These scattered null rays near the horizon will be highly blue-shifted, which can be seen from

two perspectives: 1) near the horizon, u = ∞ as discussed in section IIIA, so the geodesics u + ϵ

will pile up [12]; 2) in the scattering picture of figure 2, the geodesics near the horizon will undergo

many internal reflections before tunneling back out out of the matter shell. Consequently, we can

use a geometric optics approximation to trace back the rays to I−, which allows us to claim that

the geodesic deviation distance in u time is preserved in v time: v0−v = ϵ. As a result, in advanced

time coordinates p
(2)
ω will be of the form

p(2)ω ≈ exp
(
−iω
κ
ln(v − v0)

)
. (33)

All together, the contributions of p
(1)
ω and p

(2)
ω make the full pω mode in equation (24) of the

form

1√
ωr
e−iωκ−1 ln(v0−v) =

∑
ω′

αωω′
1√
ω′r

e−iω′v + βωω′
1√
ω′r

eiω
′v (34)

where we have used the frequency-space representations (19 - 20) of fi.

Then to isolate αωω′ and βωω′ , we can Fourier transform the above equation and compare to

the Klein Gordon norm forms (27). The resulting form is messy so will be omitted to conserve

space, but is explicitly calculated out in [17]. The result is that βij and αij are related by∑
j

|αij |2 = e2πωκ
−1

∑
j

|βij |2. (35)

Substituting equation (35) into (28) and re-arranging, the expected particle number (30) is

⟨0in|b†b|0in⟩ =
∑
j

|βij |2 =
δij

e2πωκ−1 − 1
(36)

which is exactly the result for a thermal blackbody spectrum with temperature TH = κ/2π [12, 16].

This is the Hawking temperature.

IV. THE UNRUH EFFECT

Interestingly, there is an analagous effect to Hawking radiation in flat spacetime known as the

“Unruh Effect”: an accelerating observer in Minkowski will experience a bath of thermal radiation

[14]. We now discuss the derivation of this result.

To start, consider standard Minkowski space,

ds2 = −dt2 + dx2 + dy2 + dz2 (37)
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Figure 3: Spacetime diagram of Minkowski space. The “left” and “right” Rindler wedges

correspond to regions I and II.

and consider including a uniformly accelerating observer with acceleration in the MRCF given by

aµ = (0, 0, 0, a). The proper coordinates for this accelerating observer’s geodesics will just be given

by the familiar boosted coordinate transformation, parametrized by proper time τ

t(τ) = ρ sinh(η(τ)), z(τ) = ρ cosh(η(τ)) (38)

where ρ = 1/a and η = aτ , which are known as “Rindler coordinates.” The metric in Rindler

coordinates becomes [15]

ds2 = −ρ2dη2 + dρ2 + dx2 + dy2. (39)

We can further define null coordinates (u, v) analogous to the Schwarzschild coordinates by [14]

v = τ + ln(ρ), u = τ − ln(ρ) (40)

and a global extension of these coordiantes (U, V ) analogous to the Kruskal coordinates via [15]

V = t+ z =
1

a
eav, U = t− z = −1

a
e−au. (41)

Like in the Hawking case, (u, v) are defined on only the left or right Rindler wedges (zs > t2) and

(U, V ) can be extended across either, as shown in figure 3 [15].

Then, as in the Hawking calculation, we can express a free scalar field in the presence of this

accelerating observer in terms of two mode expansions,

ϕ =
∑
i

fiai + f̄ia
†
i (42)

=
∑
i

gl,ibl,i + g∗l,ib
†
l,i + gr,ibr,i + g∗r,ib

†
r,i. (43)

The expression (42) is for the Minkowski modes and (43) is for the Rindler modes, where {gl,i}
denote modes on the left Rindler wedge and {gr,i} denote modes on the right Rindler wedge. As

before, these two decompositions define a Minkowski (M) and Rindler (R) vacuum via

ai |0⟩M = 0, bl,i |0⟩R = br,i |0⟩R = 0 (44)
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We could then proceed by calculating the Bogoliubov coefficients between for the transformation

between |0⟩M and |0⟩R as in the Hawking radiation derivation [15]. Unruh, however, used a shortcut

which will be illustrative for the analysis in section V. Unruh considered globally rotating the

coordinates from the right wedge to the left wedge by η → η−iπ [14, 20]. This analytic continuation

of the time coordinate is an example of what is called a “Wick rotation.” It transforms the positive

frequency mode coefficients as

gl,i = e−iωη → e−ωπe−iωη = e−ωπg∗r,i (45)

since gr,i are positive frequency modes with respect to η in the right wedge and gl,i are negative

frequency modes since η decreases towards the future in the left wedge [20]. Therefore, we can

calculate the normalized positive frequency modes using the Klein Gordon norm to arrive at

hl,i =

√
eπω

2 sinh(πω)

(
gl,i + e−πωg∗r,i

)
(46)

Since we also could have performed the rotation η → η+ iπ from the left wedge to the right wedge,

we can get an analogous expression hr,i. In terms of these newly defined positive frequency modes,

the field takes the form

ϕ =
∑
i

hl,icl,i + h∗l,ic
†
l,i + hr,icr,i + h∗r,ic

†
r,i (47)

Applying the Klein Gordon normalization conditions (26) to the two field representations (47) and

(43) also yields the following relation between mode operators

bi =

√
eπω

2 sinh(πω)

(
ci + e−πωc†i

)
(48)

Importantly, by deriving these globally defined positive frequency coordinates, we can now relate

now relate to the hi frequencies to the original Minkowski frequencies, meaning the mode operators

ci are eigenstates of the Minkowski vacuum: cl,i |0⟩M = cr,i |0⟩M = 0.

As in the Hawking derivation, we can then calculate the expected particle number of the Rindler

observer in the right wedge with respect to the Minkowski vacuum using (48),

⟨0M |b†r,ibr,i|0M ⟩ = eπωa
−1

2 sinhπωa−1
⟨0M |br,ib†r,i|0M ⟩

=
1

e2πωa−1 − 1
δ(0)

(49)

which corresponds to a thermal distribution with temperature TU = a
2π . This is the Unruh tem-

perature.

This suggests that we can construct a purified Minkowski vacuum across both left and right

wedges of the form

|0⟩M =
∏
i

∞∑
n=0

e−nπωia
−1 |nl,i⟩ |nr,i⟩ (50)

which upon tracing out either the left or right side yields a Gibbs thermal density matrix with

temperature TU [7].
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V. ANALYSIS AND COMPARISON OF HAWKING AND UNRUH EFFECTS

Both the Unruh Effect and Hawking effect predict that with respect to an initial vacuum, the

effects of acceleration or gravity would result in a thermal spectrum of particles. Where Hawking’s

derivation related ingoing and outgoing coordinates from black hole scattering, Unruh’s calculation

relates left and right Rindler wedge coordinates to positive frequencies defined from an accelerating

frame. This mathematical resemblance seems like the principle of equivalence at work, and indeed

this can be shown by zooming into the horizon of a black hole.

Expanding around r = rs + ϵ2 to first order in ϵ2/rs ≪ 1, the Schwarzschild metric becomes

ds2 = 4rs

(
− ϵ2

4r2s
dt2 + dϵ2

)
(51)

which is equivalent to the Rindler metric (39) up to a global scaling. From the Wick rotation

method discussed in the previous section, we can infer that in this region the time coordinate must

be periodic, t→ t+ 2πi.

In QFT, it is a standard result that using a similar Wick rotation sending t → iβ converts a

propagator into a thermal Greens function which will be periodic in β,

tr[exp(−iHt)] → tr[exp(−βH)] = Z(β) (52)

where β is the inverse temperature of thermal partition function Z(β). Applying such a Wick

t → iτ rotation to the full Schwarzschild metric will convert it from Lorentzian to Euclidean

signature,

ds2 =
(
1− rs

r

)
dτ2 +

(
1− rs

r

)−1
dr2 (53)

To avoid a conical singularity at r = rs, we match the periodicity conditions of the thermal Green’s

function to the Rindler metric and conclude that β must be given by β = 4πrs. This results in a

temperature [11, 21]

T = β−1 =
κ

4π
(54)

which agrees with the Hawking temperature TH up to a factor of 2 which stems from our ap-

proximation of the metric near the horizon. For a more in depth analysis of the relation between

Euclidean signature, Feynman propagators, and thermal Green’s functions, see [22–24].

Thus, for an observer very close to the horizon, the Hawking and Unruh Effects are the same

[11, 25]. This is a confirmation of the principle of equivalence. However for asymptotic regions from

the horizon, the Unruh effect and Hawking effect are distinct and describe two different quantum

states [7, 25]. This leads us to ask: what is the underlying principle which might relate the

Unruh effect to the Hawking effect even for asymptotic observers, and what relates the Bogoliubov

transformation to the Wick rotation approach?

A closer analysis reveals that the underlying similarity arises because both effects involve a

bifurcate Killing horizon. A bifurcate killing horizon divides spacetime into four wedges I, II,

III, IV, and occurs whenever there are two null surfaces H+,H− which intersect on a space-like
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“bifurcation surface” S [7, 25]. This bifurcate Killing horizon introduces two possible conformally

related time coordinates, and the observed thermal spectra in both the Hawking and Unruh effects

boils down to a choice between the two coordinates. In the case of black hole evaporation, this is

a choice between the Schwarzschild coordinates (u, v) and Kruskal coordinates (U, V ). In the case

of an accelerating observer in Minkowski, this is a choice between Minkowski coordinates (u, v) or

Rindler coordinates (U, V ). Wald calls these two types of coordinates in general “Killing times” or

“inertial times,” respectively [7].

The relation between Killing and inertial times of a bifurcate Killing horizon always follows the

same general form, which we now show. The Killing equation ∇(µχν) = 0 allows us to re-write the

the left hand side of equation (5) as −2χµ∇µχ
ν so the equation becomes

χµ∇µχ
ν = κχν (55)

which is just the geodesic equation

0 =
d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
(56)

with Scharzschild Christoffel symbols written in a non-affine parametrization [7]. Then, if v is a

Killing parameter on H+ and u is a Killing parameter on H−, we can define inertial (i.e. affine)

parameters (V,U) on H+ and H−, respectively, such that

v =
1

κ
ln |V | ⇐⇒ V = exp(κv) (57)

u = −1

κ
ln |U | ⇐⇒ U = exp(−κu) (58)

which is the general form for both the Kruskal coordinates (16 - 15) where κ = 1/2rs, and for

the Rindler coordinates (41) after performing the Wick rotation. We now show that this bifurcate

Killing horizon time translation symmetry is at the core of the Bogoulibouv transformation calcu-

lation approach, the Wick rotation approach, and that it provides a derivation for the first law of

black hole thermodynamics.

A. Application 1: Bogoliubov transformation between vacuua

There are three physically significant and distinct vacuua that one can consider in the case of

an evaporating black hole: the Boulware vacuum |0B⟩, the Hartle-Hawking vacuum |0HH⟩, and
the Unruh vacuum |0U ⟩ [7, 20]. They can be heuristically written in terms of Kruskal coordinates

K and Schwarzschild coordinates S as [19]

|0B⟩in = |0I−⟩S |0H−⟩S , |0B⟩out = |0I+⟩S |0H+⟩S (59)

|0HH⟩in = |0I−⟩K |0H−⟩K , |0HH⟩out = |0I+⟩K |0H+⟩K (60)

|0U ⟩in = |0I−⟩S |0H−⟩K , |0U ⟩out = |0I+⟩S |0H+⟩K (61)

where ± refers to future or past, H± refers to the future or past horizon of the bifurcate Killing

horizon, and I± refers to future or past null infinity.
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The key point is that the physically relevant vacuum which Hawking implicitly uses in his

calcualtion is the Unruh vacuum |0U ⟩. Specifically, in his trick of parallel transporting the Killing

vector ηα from H+ onto H+ to arrive at equation (31), Hawking implicitly sets λ = U . At its

core, the Bogoliubov transformation rests on this step of transforming to global coordinates and

choosing K on H± and S on I±, which amounts to choosing the Unruh vacuum (61). As a result,

the state is a thermal ensemble for outgoing modes in K coordinates from the horizon towards I+

and a pure vacuum for ingoing modes in S coordinates towards the horizon from I− [7].

Moreover, if an observer were to measure particle number with respect to the Boulware vac-

uum |0B⟩, they would not see a thermal spectrum [20, 26]. This is because for an asymptotic

observer at I+, the “in” vacuum would be an eigenstate of the “out” mode operators given that

the positive frequencies are defined with respect to the same times in S coordinates, so that

⟨0B|b†B,outbB,out|0B⟩in = 0.

B. Application 2: Wick Rotation

An alternative approach to deriving both the Hawking and Unruh effects is to use a Wick

rotation, which makes the time coordinate imaginary. In the case of an accelerating observer, this

analytic continuation of η → η + iπ, is enabled by the bifurcate Killing horizon as it effectively

redefines the left or right wedge time coordinates (u, v) in terms of global time coordinates (U, V ).

A more general Wick rotation transforms η → iθ, and under the Euclidean interpretation this

angle θ becomes the new time. Hence, the Rindler coordinates become

t = ρ cos(θ), x = ρ sin(θ) (62)

which represents an observer at constant ρ moving in a circle of length 2πρ in Euclidean space

[11, 20]. Multiples of θ = πn, n ∈ Z therefore correspond to a rotation in Lorentzian coordinates

between (u, v) on the left or right wedges which are defined with respect to global coordinates

(U, V ), as discussed in section IV.

C. Application 3: First Law of Black Hole Thermodynamics

In addition, following Wald [7] we can show that the first law of black hole thermodynamics

follows from the presence a bifurcate Killing horizon. Consider a Kerr black hole as in section II. In

this metric (1), there are two conserved quantities—time and angular momentum—so the general

Killing vector of these isometries ξµ is a linear combination of the form

χµ = ξµ +Ωφµ (63)

where χµ = ∂
∂vµ is given by the “Killing” time coordinate v [6].

We can invoke a focusing analysis similar to Hawking and Penrose’s singularity theorems to

get an expression for the area of the horizon. In particular, the expansion θ of null geodesics
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parametrized by λ on the black hole horizon H+ is related to the horizon area by [7]

θ =
1

A

dA

dλ
. (64)

Following the bifurcate Killing horizon argument of this section, the natural choice of affine pa-

rameter is the “inertial time” V so we set λ = V . Applying the geodesic deviation equation to

(64), which expresses the relative acceleration between a family of geodesics (or similarly the rate

of change of θ with respect to the V ), the result is the Raychaduri equation

dθ

dV
= −1

2
θ2 − σµνσ

µν −RµνK
µKν (65)

where σµν is a shear term for the geodesic deviation, Rµν is the Ricci curvature tensor, and

Kµ = ∂
∂V µ is the Killing vector defined with respect to V [6, 7]. Then using Einstein’s equation

Rµν = 8π
(
Tµν −

1

2
Tgµν

)
, (66)

the Raychaduri equation can be re-written in terms of the stress-energy tensor as [4, 7]

dθ

dλ
= −1

2
θ2 − σµνσ

µν − 8π
(
Tµν −

1

2
Tgµν

)
KµKν . (67)

We now consider perturbing the black hole slightly by dumping a small amount of matter δTµν

into it. The resulting change in black hole mass and angular momentum is given by integrating

this stress-energy tensor along with the appropriate Killing fields,

δM =

∫ ∞

0
dV

∫
d2SδTµνξ

µKν (68)

δJ =

∫ ∞

0
dV

∫
d2SδTµνΩφ

µKν (69)

where S is a horizon cross-section [7, 8]. To first order in δTµν we can neglect any quadratic terms

in the Raychaduri equation so it becomes

dθ

dλ
= −8πδTµνK

µKν . (70)

We now want to write Kµ in a more suggestive form. Using the relation between “Killing” and

“inertial” time (57), we can write ∂V µ = κV ∂vµ. Therefore, we can relate Kµ to χµ via

Kµ =
∂

∂V µ
=

1

κV

∂

∂vµ
=

1

κV
χµ =

1

κV
(ξµ +Ωφµ) (71)

where we have used (63) in the final equality. Then multiplying (70) through by κV and integrating,

we obtain

κ

∫ ∞

0
dV

∫
d2SV

dθ

dV
= −8π

∫ ∞

0
dV

∫
d2SδTµν(ξ

µ +Ωφµ)Kν (72)

The left hand side can be integrated by parts

κ

∫ ∞

0
dV

∫
d2SV

dθ

dV
=

∫
d2SθV |∞0 −

∫
d2S

∫ ∞

0
dV θ = δA (73)
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where the first term vanishes since V = 0 at S = 0 and the expansion θ → 0 as V → ∞. The right

hand side of (72) gives the integrals (68-69). All together, this gives the desired result

κδA = 8π(δM − ΩδJ). (74)

Evidently, the first law of black hole thermodynamics can be seen as a consequence of the presence

of a bifurcate Killing horizon, and the relations (57-58) between “Killing” and “inertial” times.

VI. CONCLUSION AND FUTURE DIRECTIONS

We have derived both the Hawking and Unruh effects, considering both a Bogoliubov trans-

formation approach between vacuua and a Wick rotation approach. A closer analysis reveals that

the presence of a bifurcate Killing horizon and the resulting time translation symmetry between

“Killing” and “inertial” time underlies the similarity between these two effects and their calculation

approaches. Given that vacuua are determined by positive frequency modes defined with respect

to a timelike Killing vector and that making time imaginary corresponds to a rotation between

coordinates, a transformation between (u, v) and (U, V ) coordinates is at the heart of both the

Bogoliubov transformation and Wick rotation [27]. The “observer-dependency of particles,” in the

words of Gibbons [19], therefore stems from the presence of a bifurcate Killing horizon.

In future work, we would like to extend this analysis and perform a detailed quantum measure-

ment theory treatment of an asymptotic observer measuring Hawking radiation, or an accelerating

one. In particular, we would like to analyze the Unruh-DeWitt detector formalism, which provides

a particle-in-a-box model of a detector with response function to be excited to energy E given by

P (E) = | ⟨E|m(0)|0⟩ |2
∫ ∞

∞
dτ

∫ ∞

−∞
dτ ′e−iE(τ−τ ′) ⟨ψ|ϕ(x(τ))ϕ(x(τ ′))|ψ⟩ (75)

where ψ is the detector ground state and m is the coupling between the field ϕ and the detector.

Using the modern language of POVMs (Positive Operator Value Measures) [28], we might be able to

define measurable observables for the Unruh-DeWitt detector and perhaps analyze the quantum

fisher information, which quantifies how well one can estimate a certain parameter such as the

temperature [29].

Moreover, the Bogolioubov transformations which indicate the presence of particle production

in the Hawking effect are mathematically the same as transformations which govern the production

of squeezed states of light from electromagnetic wave mixing processes in nonlinear crystals. The

squeezing operator across two modes of the electromagnetic field is given by

S(ξ) = exp
(
ξ∗ab− ξa†b†

)
(76)

which is nearly identical to the unitary transformation associated with the Bogolioubuv transfor-

mations between in and out Unruh vacuums [19]

U = exp
(
γijbibj − γ̄ijb

†
ib

†
j

)
(77)

Thus, recent work has considered interpreting the black hole as a producer of squeezed states, which

are highly entangled just like the Hartle Hawking vacuum state [30]. We would like to explore this

connection to quantum optics further.
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