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Abstract
Quantum Measurement Theory in Quantum Gravity
by
Benjamin Knepper
in Physics
University of California, Berkeley
Dr. Daniel Carney (Lawrence Berkeley National Laboratory), Advisor

Professor Luca Iliesiu (University of California, Berkeley), Co-chair

Scientific progress depends on the precision and accuracy of measurements of nature that
can be made. Quantum gravity is no exception. In this bachelor’s thesis, we explore ways
in which the theory of quantum measurements can be applied to observables in quantum
gravity to help further elucidate the connection between these two pillars of 20th century
physics.

In particular, we consider measuring two quantum gravity observables: the purity of Hawk-
ing radiation, and the length of a wormhole in JT gravity. Stephen Hawking infamously
calculated that black holes destroy any information thrown into them. However, modern
holographic theories of quantum gravity resolve this paradox by demonstrating that the in-
formation is not lost, but rather very “scrambled” in the radiation that black holes emit.
Thus we investigate measurements which can probe the dynamical nature of this scrambling,
which will be implemented on the Advanced Quantum Testbed (AQT) simulation platform.
Moreover, a concrete holographic observable can be derived by considering the length of a
wormhole in a 2D model of gravity. We discuss how to measure this length operator in the
(nearly) dual Sachdev-Ye-Kitaev (SYK) system, considering both projective and continuous
measurements in digital and analog quantum simulation platforms.

Developing measurements probing the information-theoretic structure of spacetime not only
have the potential for generating experimental predictions that can be tested on near-term
quantum simulators, but also provide a viable path for analyzing in-principle connections
between general relativity and quantum mechanics. This thesis relied on a wide variety of
tools and techniques, ranging from quantum optics to holography.
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Chapter 1

Quantum Measurement of Hawking
Radiation Purity

1.1 Measuring Hawking radiation at late times

Stephen Hawking infamously calculated that black holes destroy information. Specifically,
he conjectured that the dynamics of black hole evaporation could in principle turn the initial
state of a black hole formed by the collapse of a star with microscopic structure entirely
into thermal radiation, thereby converting a pure stated into a mixed state and violating the
unitarity of time evolution in quantum mechanics [43].

Much progress has been made by considering the quantum-information theoretic aspects
of black holes more closely. In particular, tools from quantum computing have proven lucra-
tive for making models which help show how the “black hole information paradox” can be
resolved. Broadly speaking, many quantum information theoretic models frame the process
of black hole evaporation in the language of subsystems: we treat the Hawking radiation and
black hole microstates as two subsystems with states pp and pg, which are highly entangled
(see figure 1.1).

The islands developments in AdS/CFT [69, 3] have corroborated the unitarity of black
hole evaporation, which leads to a testable hypothesis: a measurement post-evaporation

PB
0“.“@

Figure 1.1: Quantum information-theoretic cartoon of black hole evaporation process.
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should confirm that Hawking radiation is in a pure, not mixed, state. We ask the question:
what is the most efficient measurement that one could perform to determine the purity of
Hawking radiation subsystem?

The most brute force approach is to perform full-state tomography of pg. It is a suprising
and powerful fact in quantum metrology that a global density matrix of a many-body system
can be reconstructed to sufficient precision by performing local measurements. This result
is encapsulated in the following axiom [15]:

Axiom of Local Tomography: For any quantum state p in a Hilbert space
H="H; ®Hs® ..., there exists a set of local measurements on subsystems H;
which can reconstruct p to a sufficient accuracy ||p — p|| < e.

State tomography is a procedure which reconstructs an unknown density matrix by per-
forming measurements on multiple copies of that state. For a many-body system in a Hilbert
space of dimension d = 2V, a general representation for any density matrix in the compu-
tataional basis will be

d2
1
== By 1.1
p d;lp (1.1)

where Y; are Pauli strings of length N. The point of state tomography is to determine the
weights

pi = Tr(p%;) (12)
which can be done by performing multiple generalized measurements with POVMs
1+3;
E;, = 5 (1.3)

on d? copies of p [15]. After reconstructing p through these measurements, we can then
compute the purity of p via Tr(p?).
In general, the reconstruction error goes as ¢ = (ﬁ) d. So for an error of 0.01, we would

need to perform 10 - 22V measurements, which quickly becomes computationally expensive.

Thus we are led to ask, can we come up with a more efficient measurement scheme to
distinguish scrambling from thermalization and verify the purity of Hawking radiation?

The procedure for determining purity from state tomography outlined above does not
leverage entanglement in the measurements. In general, more efficient entangled-measurement
schemes have been developed for performing purity measurements. In practice, this means
that the measurement algorithm involves “quantum memory” by storing the measurement
outcomes in ancillas or other systems so that they can be correlated as opposed to taking
multiple independent measurements.

For example, it was shown in [17] that if one uses a version tomography known as “shadow
tomography” with quantum memory leveraging k ancillas, then to distinguish between a pure
and maximally mixed state one would only need to use C' = 0(2(”_’“)/ 3) copies as opposed
to the C' = O(2"/?) copies required without quantum memory.
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An entangled-measurement scheme which is perhaps the most straight-forward way to
measure purity is the SWAP test. It uses the SWAP gate, which acts on a two-body Hilbert
space and swaps the order of two quantum states,

SWAP [i) 5) = 17) 1) - (1.4)

Given just two copies of a quantum state p = Y. p; |v;)v;|, the SWAP operator acting on
the combined state p®? yields the purity as its expectation value [11]:

Tr(SWAPp®2) = sz-pj Tr(SWAP |v; vi| @ |v;)v,])
1,7

= 3 pipy TrCleed © )
= sz'pﬂ (vilvg) [ (1
=D n

=T (s

This SWAP test also naturally extends up to higher dimensional many-body systems [19].
In the context of holography, a bulk and boundary interpretation of this SWAP operator
has been discussed in [26] and [27].

While these measurements ensure greater efficiency over full local tomography, we can
ask a further question. Instead of performing a measurement post-evaporation, is there
a measurement protocol that one could perform to detect the dynamics of purification as
opposed to thermalization in black holes?

1.2 OTOC Measurements of the Page Curve

By considering random pure states, Don Page was able to construct an argument for how
information could be retrieved in the Hawking radiation of an evaporating black hole [68].
He modeled the full system as being in a random pure state, and considered the dynamics
of entanglement entropy of the radiation subsystem. In particular, he showed that as time
increases, the Von Neumann entropy Sg = — Tr(pg log(pg))) initially increases in line with
Hawking’s thermal prediction. However, when the subsystem size of the radiation and the
black hole microstates become the same value of N/2, where N is the total number of degrees
of freedom, there will be a phase transition. This turning point is known as the Page time
T Page, after which the entanglement entropy of the radiation subsystem will start to decrease,
eventually reaching zero at the end of the evaporation process when its subsystem size is N.
Therefore, the state pr will be pure again at the end of the evaporation process, in contrast
to Hawking’s original prediction that the entanglement entropy monotonically increases. See
figure 1.2 for a diagram of the Page curve.
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Figure 1.2: Page Curve

Let L be the size of the radiation subsystem. The Von Neumann entropy of the radiation
subsystem over all random pure states in the regime where L > 1 is [68]

1

For any density matrix p, the most general form of entanglement entropies are the Renyi-«
entropies defined by

[e% 1 (e
§(p) = T log(Tx(p"))- (1.7)
The limit o — 1 recovers the familiar von Neumann entropy S = — Tr(plog(p)) [58]. The
second Renyi entropy is also interesting to consider as it directly probes the purity:
S®(p) = —log(Tr(p?)).

Returning to the Page curve, the average second Renyi entropy for the radiation subsys-

tem over all pure states is . L
20 4+ 20V
81(%2) = — log<—2jv— 1 ) (1.8)
This shows that the von Neumann entropy used in the Page curve is an upper bound of the
corresponding Renyi entropy of the radiation subsystem, which we will use in our subsequent
analysis of purity measurements [19].

Indeed, black holes are thought to be among the most chaotic systems in nature. They
exhibit dynamics known as “quantum information scrambling,” whereby local degrees of
freedom in pg are delocalized across the whole Hilbert space due to highly entangled inter-
actions [88]. In fact, black holes are considered “fast scramblers,” meaning the time at which
degrees of freedom can no longer be recovered from local probes saturates the fastest time
of delocalization known as the scrambling time ¢, [78, 53],

t. ~ log(N) (1.9)
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for N degrees of freedom. Other systems which can saturate this timescale are Haar-random
unitary circuits, similar to the setup proposed by Page [9, 14]. As such, much progress has
been made modeling black hole evaporation with Haar-random unitaries.

How can we effectively use a quantum computer to study the Page curve dynamics?
There are two main usages: the first is to have an observer stationed outside of the black
hole, collecting Hawking quanta as they fall out and measuring the entanglement entropy of
the radiation in a quantum computer. This is essentially the approach of Hayden-Preskill,
who showed that after the Page time there is a decoding protocol that one can perform on
the radiation states that can almost immediately recover the an initial state thrown into the
black hole [44, 90]. In this case, the time evolution of the Page curve is governed by the
genuine evaporation time evolution of the black hole.

The second is to use the quantum system to simulate the evaporation dynamics. In this
approach, the time evolution is replaced by sufficiently random or chaotic unitary gates,
which resemble fast scrambling. The “time-evolution” of the evaporation dynamics is then
modeled by considering increasing subsystem size after the scrambling unitary is applied to
the full system. In particular, a subsystem of N/2 qubits would correspond to the stage of
the evaporation at ¢p,g. This is the approach we will take below.

Moreover, in chaotic and thermalizing systems, a useful correlator has been developed
which can quantify quantum information scrambling known as the Out-of-Time-Ordered-
Correlator (OTOC) F; [88, 83, 31, 90]. The OTOC is a four point correlator between two
local operators W, V' which diagnoses the failure of these two operators to commute, thereby
indicating operator spreading and scrambling. The OTOC takes the form

F=(WieViwmv). (1.10)

In most cases we will choose W and V' to be unitary and Hermitian. In doing so, the
OTOC has a natural interpretation of diagnosing scrambling and chaos from the butterfly
effect picture: it computes the overlap of the states W (t)V |v) and VW (t) [1bo). In the
former, we start in some initial state, act with V', time evolve, perturb with W and then
evolve backwards in time. In the latter, we switch the order of operations, first evolving
in time, perturbing with W, evolving backwards in time, and then acting with V. For
integrable and near equilibrium systems, these two orders of operations will produce the
same effect; the OTOC will be approximately 1. For chaotic systems, by contrast, even a
small perturbation at late times or a slight difference in intial conditions will result in vastly
different final conditions; the OTOC will exponentially fall to 0.

We can also consider the squared commutator

Cy=([W(1),V]*). (1.11)

which probes operator spreading growth. After expanding, the OTOC is related to this
squared commutator by
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Measurement protocol

Instead of measuring the purity of the radiation post-evaporation, we consider now con-
structing a measurement protocol to observe Page curve dynamics in the radiation subsys-
tem. Given that OTOCs are operators which quantify the progression of chaos over time, it
is natural to wonder whether they can be used to probe the increase and decrease of Renyi
entropy (RE) S](%z)

For an initial mixed state, there is an OTOC-RE relation that was discovered in [46, 29|
and subsequently discussed in [92], which we now review as it provides relevant insight the
case of an initial pure state as in the black hole evaporation setup. Consider two comple-
mentary subsystems A, B. Then the OTOC-RE theorem states

eS8 = v <W3(t)VWB(t)V> (1.13)

d B B8=0
where the expectation value is over a thermal Gibbs state of inverse temperature 5. Here
we are assuming that both Wpg and V are Hermitian and unitary, and Wg acts only on the
subsystem B. Equation (1.13) shows that by acting with operators on subsystem B, one can

determine the purity Tr(p%) = e=S4 of subsystem A. This theorem can also be naturally
extended to finite temperature systems with Euclidean insertions of e ?# in the correlator.

In our case, we assume the black hole starts in a pure state, p(t = 0) = |¢o)tho|. As
such, we can draw from the quantum metrology literature and consider a variant of the
OTOC known as the Fidelity OTOC (FOTOC) in which the operators are chosen such that
V = |o)bo|, W = €Y where G is some Hermitian generator of the unitary transformation.
With this prescription, the OTOC becomes a fidelity measurement

Fy = Tr(pop:(6)) (1.14)

where p;(0) = e~0C it p e~ iHei0C [33],
We can take inspiration from the OTOC-RE theorem above and try to adapt it for the
case of the FOTOC to probe the Renyi entropy of the radiation subsystem pgr. Indeed an
analog exists and is alluded to in [54]. Specifically, an arbitrary density matrix p can be

decomposed into blocks called multiple quantum coherences (MQCs) given by

Z Z Pij ‘wz %\ = Zlom (1.15)

m Ai—Aj

where p,, encodes all the coherences between quantum states with eigenvalues \; of some
operator G which differ by m. The coherences of these blocks can be quantified with the
norm

I, = Tr(p;rnpm) = Tr(p_mpm)- (1.16)
In particular, from (1.14), the FOTOC can be written as the Fourier transform of these
multiple quantum coherences [33]

Fy =) Lnpm(t)e™. (1.17)
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Po

Figure 1.3: Quantum circuit diagram schematic for OTOC measurement of Page curve.

As such, one can experimentally determine the weights I,,, by measurements of the FOTOC
at various times.

Similar to the OTOC-RE theorem above, the authors in [54] show that the Renyi entropy
of a subsystem determined by the support of the operator G which generates the unitary
W (0) can be determined by these multiple quantum coherence weights:

S (pa) = —log (IS + 15°,) (1.18)

where I¢ corresponds to multiple quantum coherences on the G subsystem, and I9¢ to
coherences on the G¢ subsystem. The m = 0 mode is important because in this case the
coherence norms give the purity I,,—o = Tr(p?,_,), which can be approximated by performing
measurements over a full range of angles 6.

Thus by taking the OTOC measurement at various times, from which the weights I,,, are
obtained by inverse Fourier transforming, one can determine the second Renyi entropy, and
therefore the purity, of a subsystem. Here, we treat the subsystem that G acts on as the
radiation subsystem and the complement as the black hole subsystem. We can model the
effect of measurements at different times by varying the support of the generator G across
the quantum circuit as shown in figure 1.3. When G has support on N/2 qubits, we expect to
see the Page phase transition and thus in performing multiple measurements near this regime
will be able to diagnose the expected purification effect for models of black hole evaporation.
While this protocol achieves a probe of subsystem entropy through OTOC measurements, it
requires global control through measurements also on the complement subsystem G¢, which
in the black hole evaporation language is pp. Given that the black hole interior should
be inaccessible to local measurements, in ongoing work we are investigating information-
theoretic ways to remedy this effect and modify the protocol to only depend on G subsystem
measurements.
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1.3 Pseudorandom Scrambling Simulation at the
Advanced Quantum Testbed (AQT)

Leveraging recent advances in quantum simulation, we are in an era where one can actually
implement such models of black hole evaporation on quantum computing platforms. Follow-
ing the procedure above, there are two essential experimental simulation tasks: 1) identify
a scrambling unitary U to implement the time evolution, and 2) measure the OTOC.

Many quantum circuit models of information scrambling have been developed [88], and
among them the ideal models for simulating black hole evaporation would be “fast scram-
bling.” As explained by Belyansky et al. [7], a minimal model for fast scrambling requires a
generating Hamiltonian with a local H; and global H;; term, H = H;y + Hy;. One common
variant of this model is to trotterize the local and global components into alternating circuit
layers, so that the scrambling unitary at time ¢ becomes U(t) = (U;U;;)*". For example, the
authors of [7] demonstrate that

N
U =[] Uns (1.19)
=1
Uy = exp(——2-5N"27.7), (1.20)
11 < \/N; _])

with U; being single-site Haar-random unitaries and U;; a global chaotic spin chain, is
sufficient to achieve a fast scrambling time of ¢, o log(N).

However, on real (digital) quantum simulation platforms, the global couplings of the form
Uj; are experimentally challenging to implement. Instead, one can attempt to be clever by
reducing the size of the couplings in U;; while increasing the size of the Hilbert space di-
mension. This was the approach that the Lawrence Berkeley National Laboratory Advanced
Quantum Testbed (AQT) took in [10], by implementing quantum information scrambling
on three-level-system superconducting qutrits, using a teleportation algorithm developed by
Yoshida and Yao [91]. The scaling of of subsystem size in qudits enables complex simulation
tasks on fewer devices. As a concrete example, the Hilbert space dimension of two qutrits is
greater than that of three qubits. In superconducting transmons, the anharmonicity of the
Josephson junction potential enables the experimental realization of subspaces greater than
2 [84, 37, 66].

Moreover, not only does pseudorandomness provide a viable tool for modeling scrambling
given the previous work by Hayden-Preskill and Page on black hole information dynamics,
but also elucidating the connections between randomness, quantum chaos, and scrambling is
an active area of research [9, 58, 38]. Therefore, as part of this senior thesis, we proposed to
extend this previous AQT work and perform a quantum information scrambling simulation
on pseudorandom qutrit gates.

We took inspiration from [65] where random diagonal unitaries are used to generate
many-body localization and discrete time-crystalline phases. Given that in our case we want
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to simulate disordered as opposed to ordered phases, we implement the brickwork layer
approach above and in [64], by interweaving layers of single-site random unitaries U; as in
(1.19) and U;; given by

Ur(0ag, 023, 032, 033) = diag(1,1,1,1, €22 2 1, ¢2s ¢ifs3) (1.21)

as represented in the computational basis. The angles couple the subspaces 2 and 3 between
two neighboring qutrits, and are randomly sampled from 0; € [—37/2, 7/2]. The local “Haar”
gates Uy can be constructed from Cliffords, which in reality form a 2-design [75]. Again, the
full scrambling unitary becomes U (t) = (U;U;)".

Before discussing numerical simulations of this pseudorandom qutrit scrambling unitary,
we can attempt to analytically quantify its closeness to Haar-randomness using the tech-
niques from unitary k-designs, which we now review.

When integrating observables over the Haar measure, we can use the identities

Haar

/HaardUZL /HaardUﬂU):/Haarde(UV):/ dU f(VU) (1.22)

for V€ U(H). Oftentimes, one is interested in developing an ensemble of unitaries which
resemble the Haar ensemble up to some number of moments. For any arbitrary ensemble,
we can define the k-fold channel as

o) (4) = /5 dA(U®F)T AU (1.23)

which encapsulates the effect of transforming an operator under k& moments of unitaries
drawn from the ensemble. For the case of a Haar ensemble, (1.23) recovers the familiar rule
for Haar conjugation in the special case of k = 1 and dimension d:

1
/ dUUTAU = p Tr(A). (1.24)
Haar

It is a theorem that an ensemble is a unitary k-design if an only if

k k
) (4) = Bip,,(4). (1.25)

However, there also exists a more streamlined test of k-design known as the frame poten-
tial,

FP = / dUdV | Te(UTV)[?*. (1.26)
uveé

For a Haar-random ensemble, fl({?ar = k!. Frame potentials provide a more computationally
direct way of quantifying how Haar-random a unitary ensemble is through the following

theorem:
fg(k) > ]_—(k‘)

Haar>

(1.27)
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with equality if and only if £ is a k-design [21, 75].

We can use these k-design techniques to help us quantify the ranndom scrambling uni-
taries that we defined above. In this case, the ensemble is given by £ = {U,}. Then for N
qubits, its frame potential is given by

FE = / / dUdVy| Tr(UIV,) |
s, Vs€e€

= dUdVidU;dVig

Ur,Vr€Haar,
0c[—3n/2,7/2]

_ _ 2k
= / — dVIdUndVH\Tr(U}I(mvn(e)v,)‘ (1.28)

0e[—3m/2,m/2]

_ _ 2k
-/ WndVu| T (U @Va@)|” [ avifmeira)
0e[—3n/2,m/2] Vi€Haar

N N J/

v Vv
Fir) 7

2k

T (U], (0)U]Vivin(6)

2k

In the third line we used (1.22). In the fourth line, we used the fact that the § are drawn inde-

pendently and the Haar measure separates ensemble averages. Evaluating the two integrals
above [62],

k
f}’“>:/ dvITr(V,)’“Tr(v}) :Tr(/
Vi€Haar 1%;

which is just the Haar frame potential. Using (1.21) and k = 1, the first integral reduces to

dwv[@’fm@’“) ISl = K (1.29)

€Haar

w/2 o ‘ 2
F) = / d@d@"S + ) el (1.30)
—3m/2 i€{22,23,32,33}
For £k =1 and normalizing the integral above, we get F 1(}) = 29 meaning that
FM =270 (1.31)

Therefore, this ensemble £ only forms an approximate 1-design so we do not expect for it
to achieve fast scrambling, in line with the fact that we have chosen U;; to couple nearest
neighbor qutrits for experimental feasibility as opposed to the global coupling required for
minimal fast scrambling models. Nonetheless, we can still quantify relevant scrambling rates
and Lieb-Robinson bounds with this ensemble.

The most brute force way to measure the OTOC is to implement a circuit which exactly
reconstructs Fy = VU,WUIVIU,WTUT piece by piece, then performs a fidelity measurement.
This method gives the amplitude squared |F}|* without keeping track of any phase informa-
tion in the correlator, yet nonetheless provides a simple test to observe general scrambling
dynamics which should decay the four point correlator.



CHAPTER 1. QUANTUM MEASUREMENT OF HAWKING RADIATION PURITY 11

OTOC (15 ensemble averages)
LA A BN BRLEL L g

B L T T T
1.0+ —e— Op. separation = 1
I —o— Op. separation = 3 |
L —e— Op. separation = 5 |
0.8 —e— Op. separation = 7 -
0.6 - .
£
0.4 -
0.2 1
0.0 - -
sl e b e b e e b b e e b e b by
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

t [number of cycles]

Figure 1.4: Google Cirq simulation exhibiting OTOC decay on qutrits for U, = U;U;;

We have manually coded a qutrit Google Cirq module to implement an OTOC scrambling
circuit with Uy = U;U;; as defined above. Figure 1.4 shows the results for V = X fixed on
qutrit one and W = Z on qutrits of varying operator separation distances. The plot exhibits
the expected decay of the OTOC from information scrambling. It also confirms this rate of
decay decreases as the operator separation between W and V' increases, allowing more time
to traverse before the commutator [W(t), V] becomes nonzero.

There are more efficient ways to measure the OTOC beyond the brute force method
discussed above [81, 89, 51]. One promising method for the digital qutrit platform is known
as the “interferometric protocol” which utilizes an ancilla qubit C' prepared in the state
+)e = \%(|O)C +|1)). In this protocol, the components of the OTOC are then separately
applied to the system A and the ancilla, allowing the circuit depth to be cut in half. The
final state generated is

(VW () [$(0))a @0} + WDV [$(0)))a @ [1)¢
V2

W(t)) = (1.32)

via the following algorithm taken from [81]:

14 @ 10)0]¢ + Va @ [1)X1]
Us(t)a ® 1¢

Wa®Ie

Us(—t)a ® 1¢.

Vi [0)0]¢ + 14 @ [1X1] .

A
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Then the real and imaginary parts of the OTOC are given by X and Y measurements on
the control qubit,
Fi= (X)e+i (V) (1.33)

We are in the process of simulating this more efficient OTOC measurement protocol on
the qutrit pseudorandom unitary Uy, in preparation for an experiment at the AQT in 2026.
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Chapter 2

Quantum Measurements of Wormbhole
Length

This chapter is based on work to appear in collaboration with Manthos Karydas (LBNL),
Daniel Carney (LBNL), and Julian Sonner (University of Geneva) titled “Quantum Mea-
surement Theory of Holographic Wormhole Length” (2026).

2.1 JT Gravity Wormhole Length

Identifying and characterizing measurable observables in quantum gravity has been an im-
portant initiative for high energy theory across a wide range of sub-fields [72, 34, 42, 16].
In this portion of my senior thesis, we investigated the measurement-theoretic properties of
one such quantum gravity observable—the length of a wormhole in a two-dimensional model
known as Jackiw-Teitelboim (JT) gravity [48, 82]. We first review the basics of JT gravity
and the derivation of this length operator by Harlow and Jafferis [41].

JT Gravity Review

JT gravity is a particular example of a 2D “dilaton” gravity model [28]. Dilaton models
modify the Einstein-Hilbert action by coupling the Ricci scalar R to a new scalar field P,
the dilaton,

B 1
N 167TGN

1
167TGN

/dzx\/—gR—I—--- — /d2$\/—g(I>R—|-... (2.1)
and in general 2D dilaton gravity models include a dilaton potential parametrized by a single
function U(®). For JT gravity, U(®) = —A, where A is the cosmological constant. In the
case of AdS2, one sets A = —2/I3 5. After including the other topolological Einstein-Hilbert
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terms, the full action for nearly AdS, classical JT gravity takes the form
1

2
S = [CDO (/ d*r/—gR + 2/ dt MK) —|—/ de\/—g(b(R#- —)
167G N M oM M

Ras
1
+2/ aty/Hle(K - —)|,
oM Iags

where K is the extrinsic curvature and 7, is the induced boundary metric [41]. JT gravity
has provided wide applications to studying near-extremal black holes and the information
paradox [28].

In more detail, the solutions to the equations of motion are described by pieces of AdS,
given by

(2.2)

ds®* = —dT? — dTy + dX?, (2.3)
TE+ T8 — X? = lh4s-

The AdS, solution in “Schwarzschild coordinates” is given by

Ty = laas(r/7s)
Ty = lnasy/ (r/rs)? — 1sinh(try/345) (2.5)
X =laas/ (1/rs)? — Lcosh(trs/lRgs)

which one can check satisfies (2.4). Here r, is the Schwarzschild radius.
In Schwarzschild coordinates, the metric and dilaton take the form

r2 _ 2 12
ds’ = ———=dt* + A dr? (2.6)
AdS ey
T
D=0, — 0, (2.7)
Ts [aas

where ®|,_., = &, is the value of the dilaton on the horizon. Therefore, we take ®, to be
dimensionless, and 7} to have units of length.
By setting r = r. — oo to be the cutoff radius, we can derive the boundary conditions,

T2

’Ytt|aM = _ZQC ) (2-8)
AdS
TC

Ploy = &) — = —lfb Te (2.9)
Ts AdS

where ~ is the induced metric on M and we have defined the boundary dilaton as the
characteristic length scale

2
i)
by = [as®n (2.10)

Ts



CHAPTER 2. QUANTUM MEASUREMENTS OF WORMHOLE LENGTH 15

As we will show, the dilaton parameters ®;, and ¢, provide the relevant parametrizations of
the renormalized geodesic length L (i.e. wormhole length) and bulk wavefunctions W.
Additionally, the AdS, solution in “global coordinates” is given by [39]

Ty = 1\/1a4s + 2 cos(T/laas) (2.11)
Ty = 1\/1a4s + ¥ sin(7/laas) (2.12)

X=uz (2.13)
which using (2.3) yields
l2 2 l2
ds? = — Adfx dr? + 295 g (2.14)
Iads lias + @2
b =,/1+ (x/lAdS)Z COS(T/ZAds). (2.15)

We can relate the global time 7 to Schwarzschild times t = ¢, or t = ti on either the left
or right boundary of the 2D model via

1 1
cosh(rety/l3ys)  cosh(ratr/34s)"
Also worth noting here is the so-called “semi-classical” limit convention for JT gravity,

following [41]. Equation (2.9) resembles the conventional dilaton boundary conditions [63,
2, 28],

cos(7 /laas) = (2.16)

Doy = 4 (subleading as € — 0), (2.17)
€

if we identify € = [3,4/r. as the “near boundary cutoff” and ¢, = a > 0 as the boundary
dilaton length. Then the Schwarzian JT action becomes

e
Sum =~ [ L7611}, (2.18)

where {f(t),t} = f"/f' =3 (f"/f)? thus [ dt{f(t),t} has dimension (length)~" [63]. To get
intuition for the JT semi-classical limit and as a preview for the nearly dual correspondence
between JT gravity and a chaotic many-body system called the Sachdev-Ye-Kitaev (SYK)
Model, let us for a moment consider the SYK Schwarzian action which has the form

S~ g;/dt{m), 1 (2.19)

where J is the SYK coupling. Matching the bulk and boundary Schwarzian actions, we see

that 5 N
b
—_—~ — 2.20
an "7 (2.20)
so sending Gy — 0 or N — oo has the same effect as ¢, — oo. In pure AdS, we there-
fore expect the semi-classical limit is ¢p/laqs > 1; in thermally excited AdS with inverse

temperature 3, it is when ¢,/(Gn3) > 1.
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Length Operator in JT Gravity

Now we provide the derivation for the quantum operator corresponding to the length of a
wormhole in JT gravity following [41]:

cosh( Sﬂi—;vE5>
L= 2lAdS In . (221)

vV 87TGN¢1)E

where ¢ is the canonical time coordinate and FE is the combined boundary energies.
We begin by defining the JT Hamiltonian via the boundary stress energy tensor. If we
define a boundary “CFT metric” as

l2
CFT AdS
o = Ty T (2.22)

then by varying the action (2.2) with respect to 7T

4w one can obtain a form of the boundary
stress tensor [41]

2 5S 1 3 ( d
_ < i (1A, P — —) 2.23
Vierr| 09T 81Gy Z?Ads7 A laas loas (2:23)

_ lads . .. . .
where 7y = —mw is the outward pointing (spacelike) unit normal form on the boundary

wo
Tepr =

and gives the units of (length)™! to the extrinsic curvature. The only nonzero component is
r”, which at the boundary is

Te 75\ 2 Te 1/7rs\2
P lons = 1— (-) ~ (1 _ —<—) ) 2.24
| [aas T Iads 2\r, (2.24)
as r. — 00. The factors of [pqs then cancel in the expression for the Hamiltonian on either
boundary given by

(1)2
H=Tlw=—1— 2.25
CFT = 167Gn o (2.25)
So the full Hamiltonian is the sum of the left and right Hamiltonians,
(I)2
H=_—"I_ 2.26
8TG Ny (2.26)

The phase space can be written in terms of conjugate variables (E,d) or (L, P), where
L is the length variable and ¢ is the boundary difference time § = (¢, + tg)/2. We now
compute this renormalized geodesic length defined by

L = Lyye — Le (2.27)
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where

Te d .
Lyare = / - . Le=2lsln (2(éb—r) (2.28)
—z. \/1+ (7/laas)? lads
We find z. in terms of r. by equating the Schwarzschild and global dilaton solutions at the
boundary,
Te
;b?b— = (I)h 1+ (xc/lAdS)2 COS(T/lAds>. (229)
AdS
By setting t;, = tg = t, we can express t = 0. Then using the relation between global and
Schwarzschild times (2.16), we arrive at

T, = lAdS\/(rc/rs)2 cosh? (61, /13 45) — 1 (2.30)
The integral in (2.28) evaluates to Lpgre = lads ln(%) with
= Te/laas _ i 1 ~1— 1
1+ (2/laas)? (re/7s)? cosh? (57, /1% 45) 2(re/7s)? cosh® (614 /12 4s)

(2.31)
in the limit r, — oo. Therefore, Ly, = laas ln(4(rc/rs)2 cosh2(5rs/lids)). Substituting the
Scwarzschild radius from (2.10) into Lpg.e, we obtain for the full renormalized length (2.27)

L(®y) = 2pas In @m(%) /@h) , (2.32)

which upon substituting @, = /87Gy@,E from equation (2.26) gives the result in (2.21):

cosh< &ri—NE(S)
L(E) = 2l z4s1 ’ . 2.33
)=\ U aa 25

This is the Harlow-Jafferis semi-classical length [41]. Note that the variables F and &,
provide two representations of the geodesic length L, and therefore also wavefunctions ¢ (L).
After defining the conjugate momentum through the Poisson bracket relation

dLOP OLOP |

L PYpy= 20 OO L 2.34
e Phes = 5558 T oF 05 (2:54)
we can re-define the Hamiltonian in terms of H(L, P) as
H— 8TG NIRas p2 1 o~ L/laas
o) 8GNy 535
P 9 (2.85)
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Figure 2.1: Phase space of JT gravity Hamiltonian

with the effective mass being

Py

Evidently, in terms of this spacetime length L, JT becomes analogous to an exponentially
decaying scattering potential as showin in figure 2.1.

We now want to consider measuring this renormalized geodesic distance L. For a given
bulk state ¥, the two basic measurement statistical quantities to calculate are the expectation
value and variance,

Mefr (236)

W= [ dLLiwwp, (2.37)
(L%)y = /OO dLL?|W(L)[?, (2.38)
(ALY, = (L*), — L)y - (2.39)

Below we compute the above with respect to the Hartle-Hawking state.

The Hartle-Hawking state W3 has an associated inverse temperature /3 and is the analog
of the thermofield double for JT. To derive an expression for Wi* (E) or WS (L) in either the
E or L bases, Harlow and Jafferis find the saddle points of the Euclidean path integral. Here
we just focus on the L basis calculation with the geometric constraints that the boundary
region has length % and anchors a geodesic through the bulk of renormalized length L.
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In the semi-classical limit ¢,/(8Gy) > 1 the Hartle Hawking state becomes
27Dy + 8%(% + 2 )

tanx

167TGN ’

W)™ = Nexp (2.40)

— 1B

- 2
4lAdS

Eq. (2.9). The relationship between x and length L is given by

where N is a normalization constant and x , where to get the second equality we used

sinx

= 4ppe/ Plaas) g=1 (2.41)
so that
sinx
L(l’) = 2lAdS hl(%éb - ) s (242)

with x € [0, 7].
The Hartle Hawking state (2.40) is approximately a Gaussian wave function peaked at

xo = /2 which corresponds to Lyeqr 1= L(xo) = 2laqs In <%> In the semiclassical limit

(2
v/ (GnB) > 1 we can Taylor expand around L = Ly..;. We obtain from (2.40) and (2.42)

2
TPy <L_Lpeak)

WHH (L) o Newon (W0 5) 7w Bus (2.43)

Computing the average length (2.37) and variance (2.39) in the HH state reduces to eval-
uating Gaussian integrals. The leading values in the semiclassical limit ¢,/(GnSB) — oo
are

&
(L), ~ 2aas ln(2ﬁ¢b) , (2.44)

2 2 SGNﬁ
((AL)*), ~ LRas (—wb > : (2.45)

The fluctuations in the length are small compared to its average value as can be seen by
combining (2.44) and (2.45) into the ratio

2GNB

AL Wns L/(alaas)
S L N T — (2.46)
L ln(25¢ > L/lAdS
Ty

which goes to zero in the semiclassical limit (Gn()/¢» < 1. Note that we can rewrite the
semiclassical limit as L < —lxqslog Gy which implies from (2.46) that AL/L < 1. This
makes sense since the length fluctuations must be small compared to the average length in
the semi-classical limit.

Moreover, an interesting feature of the semi-classical limit is that it “squeezes” the length
quadrature, in the language of quantum metrology. That is <(AL)2)B — 0 as GnfB/¢p — 0.
In this regime, the JT Hamiltonian becomes entirely dominated by the potential term, which
is consistent with the fact that meg — 0o as Gy — 0 as one can see from (2.36).
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2.2 SYK Dual Length Operator

Taking Harlow and Jafferis’ result for the length of a wormhole in JT, this leads us to ask:
how can we measure it in the boundary CFT? For this, we need to identify its representation
in the Sachdev Ye Kitaev (SYK) model, which resembles JT gravity in a low energy sector.
First we provide a review of SYK and relevant scaling limits. Then we discuss representations
for the length operator in SYK. Throughout we will either call the wormhole length L or ¢,
as will be clear by context.

Review of SYK and Scaling Limits

SYK is a chaotic many-body model consisting of N Majorana fermions 1; coupled by p-local
random interactions J [76, 50]. The full SYK Hamiltonian is

Hyr = it/? Z JigigWiy - Vi, - (2.47)

1<iy < <ip<N

The couplings J are randomly sampled from a Gaussian distribution with zero mean and

variance 72
(T2.4) = < (2.48)

AG)

where A\ = 2p?/N. The Majorana Fermion operators v; satisfy
{Wi, 0} = 20,5 . (2.49)

For more practical experimental implementations, often the more familiar p = 4 Hamil-
tonian is considered,

Hsyr = % Z Jijra0ithjVriy . (2.50)

ik, I=1

An even further simplification can be made to this Hamiltonian known as the “complex
SYK” model, in which the Fermions are modeled as spinless Dirac Fermions,

N
N 1
H.= Ny Z JivinsiriaChy €L Cj1 iy — MZCTQ‘ (2.51)

11,12,J1,J2=1

with {¢;,¢;} = 0,{c;, ¢;} = d;;, and p a chemical potential [32].

Multiple pieces of evidence suggest that a regime of SYK might be dual to JT gravity
because SYK i) saturates the chaos bound and ii) exhibits an effective Schwarzian action at
low energies, which are two properties expected for JT gravity [70, 61].

We now review the double-scaled and triple-scaled limits of SYK, in which this correspon-
dence with JT gravity becomes manifest and are therefore needed to define the wormhole
length dual operator. An overview of these limits is shown in figure 2.2.
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SYK »  DSSYK —  SSYK
N 2 . N , chord states / A0, Lhare — 00, N .
Hgyi =P Z Jrv; P00, [V =00 Krylov states p " Hgyrx = Hyr
I=iy..ip, )= 2_1’2 fixed = e = e fixed
i€{N} =N length states (A7

Figure 2.2: Overview of SYK Limits.

According to AdS/CFT, partition functions on the bulk spacetime and boundary CFT
should match:
Tr (e PHerr) = Tr(eFHaas) (2.52)

which can be decomposed into sums over moments of the Hamiltonian. Under this cor-
respondence, there is a well-studied relation between triple-scaled SYK (TSSYK) and JT
gravity. TSSYK is a limit of DSSYK, which we first review.

The double-scaled limit of SYK is where

2p?
p— 0o, N — o0, )\Ewﬁxed. (2.53)

In this limit, the ensemble averaged moments of the Hamiltonian <Tr (j':l ’;YK)> can be
J

computed by using “chord diagrams” [55, 8]. Chord diagrams are combinatorial tools for
calculating Wick contractions in moments of the Hamiltonian or higher order correlators.
They are used as follows:

(iHt)*

1Ht . ) -

, decompose factors et = 3",

1. Given any correlation function Tr(01 etHt0ye~
to be evaluated term by term.

2. Ensemble average and perform Wick contractions between couplings J in the Hamil-
tonians, and these are calculated using chord diagrams

When summing over chord diagrams, we count the number of intersecting chords between
the various operators in the correlation function. Between two operators of sizes s; and s»,
8] shows that one picks up contributions of e=2s152/V,

So for the case of moments of the Hamiltonian, which is an operator of size p, we pick

up contributions of the form
eWIN e r =y (2.54)

iterated over all possible chord diagrams. Therefore, the moments of the Hamiltonian are
simply given by
my = <TI' (Hg’YK)>J _ Z q# H-H intersections (255)

chord diagrams

up to normalization factors.
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For more complicated correlation functions involving insertions of operators M beyond
the Hamiltonian [§],

(tr (--- H®MH"™M,4H"™))

H—M, int ti Ma—Mp int ti
_ Z q#HfH intersections H (e*ZPAP/N> # 4 intersections <€*2pApB/N> #Ma—Mp intersections

chord diagrams A A,B

(2.56)

These chord diagrams have an associated Hilbert space with an un-normalized “chord
basis” {|n)}>°,, which represent the number of open chords. We can make a change of
variables and define

Ebare = lAds)\TL (257)
so that the effective DSSYK Hamiltonian in the rescaled chord number basis becomes
T = —"7 <6i>\lAdsf€ \/1 — e—tbare/laas + \/1 — e—tvare/laas e_MlAdSk) (2.58)
A1 —q)

with k = p/lpasA defined in terms of the conjugate momentum to 7 [55, 73, 4].

One can also make the chord basis orthonormal using a Gram-Schmidt type procedure.
This amounts to carrying out a Lancoz algorithm which converts to the chord basis to a
“Krylov basis.”

Then in the triple-scaled limit, one further sends

e_ebare

— ¢ fixed. 2.
E e " fixed (2.59)

A= 0, lygre — 00,

This limit can be thought of as a choice of regularization scheme in the JT wormhole length
picture. The third condition can be re-written as

gbare g ( 1 )
= — —2log| — 2.60
lags  laas S\ 2x (2.60)

2
lAdS

which is equivalent to the JT renormalization prescription when \ = ﬁ@]aM = 2V SO

A — 0 corresponds to r. — 00, as expected in the semi-classical limit.
Hence, the triple-scaling limit effectively zooms into the low energy regime of SYK,
resulting in the Hamiltonian

~

2 R
H=Ey+ 2/\J<% + 26_Z/lAdS> + OO0 (2.61)

Note that the resulting triple-scaled I:ISYK matches the form of H gr! Therefore, the triple
scaled limit is often called the “quantum-JT” limit of SYK [57].
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In addition to the double and triple scalings of SYK, another common scaling is called
the conformal limit. Keeping in terms of the scaling parameter A we defined above, the
conformal limit can be formulated as [57]

1 N
NBT  2p?BT

where BC provides the coefficient of the Schwarzian action. This coefficient C' provides a
metric for distinguishing between true quantum and semi-classical regimes of quantum JT
gravity. For simplicity, let’s set J = 1 which we can do since it just sets the scale of the
variance in the GUE and then the energy dependence will just be on  only. Then

A—=0, BT —o0, (C=

fixed (2.62)

1

C = ) < 1 — quantum fluctuations of Scwharzian are large (2.63)
1

C = ) > 1 — semi-classical regime (2.64)

So the quantum limit of JT is where we first take f — oo and then A — 0 and the semi-
classical regime is where we first take A — 0 and then § — oco. In the conformal limit, the
SYK action becomes the Schwarzian,

S(¢) = —BC / du{ f (), u}. (2.65)

Length as complexity or two-sided propagators

Now, we can discuss what the dual operator is in SYK for the length of a JT gravity
wormhole. In general, we have found that there are two predominant ways of thinking
formulating operators which probe wormhole length via: 1) complexity, and 2) two-point
correlators across the sides subtending the length.

There have been many proposals which relate the volume of a wormhole in the bulk
to the computational complezity of states in the boundary [13]. One manifestation of this
connection between complexity and length is manifest from the double and triple scaling
limits of SYK discussed in the previous section. As a reminder, in DSSYK we defined a
length operator as a scaled version of the chord number operator,

{ = laasAi. (2.66)

Moreover, we showed that in TSSYK, this length operator takes the same form as the
renormalized length operator { as in JT gravity. However, the physical interpretation of
chord number in terms of operators in SYK is unclear.

The authors in [4, 73] showed that there exists a more tangible formulation of this operator
relation (2.66) in terms of Krylov complexity. Krylov complexity [74] is a measure of operator
spreading in many-body systems exhibiting chaotic dynamics. Krylov complexity differs
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from other measures of complexity by a choice of basis. The Krylov basis is chosen from the
Baker-Campbell-Hausdorff expansion of the time evolution of an operator (or the moment
expansion of the time evolution operator on a state), and is the optimal basis in the since that
it provides an upper bound on for other complexity measures, analagous to quantum Fisher
information versus classical Fisher information. More specifically, for Krylov complexity of
a quantum state, we consider the expansion into moments

w) =110 = 3 S ko) (2.67)

The Krylov basis is then obtained from a Gram-Schmidt orthonormalization procedure
known as the Lanczos algorithm over the basis {H*|0)}2°,. Thus intuitively, Krylov com-
plexity probes the k at which is necessary to reconstruct a state |1 (¢)) from |0).

Notice that the basis {H*|0)}%2, is the chord basis discussed in the previous section.
Therefore, the authors [4, 73] show that the Krylov basis is just an orthonormal version
of the chord basis. They then define Krylov complexity C'x as the average chord number,
Cx = (n). This correspondence means that the length directly probes a form of operator
spread complexity:

<é> = 1aasACe, (2.68)

with expectation value taken over the infinite-temperature thermofield double state in TSSYK.
Given this correspondence, one can envision probing the length with experimental tools that
diagnose Krylov complexity, such as OTOCs [74].

Alternatively, to derive a length operator directly in terms of SYK fermions, we can take
a different approach using two-sided propagators. The length ¢ of the wormhole is the length
between the left L and right R boundaries of JT gravity. In the thermofield double “ground
state,” this is simply the length across pure AdSs. This is evident from the conventional
holography ansatz

<@L@R> - / dPe~ALP) (2.69)

where the propagator depends on the sum over geodesic paths P from L to R with lengths
L(P) [59, 5].

Thus, in order to probe the analog of this length in the boundary theory, we need a
notion of left and right in an SYK system. The simplest way of doing this is two consider
a system of two SYK Hamiltonians, HZ, ;- and HZL, -, which, using left as an example, can
write as

N
HSYK,L = i"/? Z le‘i’fp (2.70)
I

using the shorthand Wy = 1);, ...%;,. Except in building up to the boundary representation
from the bulk JT Hilbert space, how do we actually get this left-right operator distinction?

Section 3 of [55] and section 7 of [56] give an interesting answer via symmetry breaking:
if we break the time translation symmetry between H; and Hpg, then this gives us a probe
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of the length. One way of doing so is to insert a matter operator O on the Euclidean disk.
A general operator in one SYK with heaviness A = s/p can be written as

O =iy K1V, (2.71)
1
N -1
<Ki1...isKj1...jS>J = (3) (51'1]'2 e (51-st (272)

These operators are interpreted as “matter” fields in the bulk. This allows us to distinguish
left and right chords on either side of O.
Concretely, as discussed in [55, 4],

¢ithsvic e=ithsvic P D) = etfie=tha |, = 0 ng = 0) = e Hr-Ht |0 0y (2.73)

where the = means the two are equivalent under ensemble averaging either over the TFD
or chords. Evidently, acting with © amounts in a time evolution by Hp — H; which breaks
the time translation symmetry.
We now use this fact to derive an expression such as (2.69) by considering the autocor-
relation of @,
C(t) = <@@(t)> - <Tr<@eth@e*the*5H>>J (2.74)
The correlator can be expanded into moments as

o0 -1\ 2n
clt) = <Z ((222)' TH(O[H, [H,...,[H,0].. .]])> (2.75)
n=0 ’ J
which involves terms
C> <Tr((§ﬁl’“(§ﬁl’“2ﬁl’“3>>
- (nfonsns),
= DO (K (I )OS L)) T (e, () ()
I \ ~ v
. <J/\/@> ky+kg
—1/2 k1tk2
(RO e
I

In the second line, we converted from an expectation value over the thermofield double state
to chord states using (2.73). In the third line, we used a generalization of (2.48) and inferred
that the action of a sole matter operator O of size s on the TFD is to pick out a chord state
of species s.

J

(2.76)
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Note ki + ko = 2n where 2n are the moments in the expansion of the correlator (2.75)
[4]. If we consider up to the second moment n = 1, then

2/N -1 o
> T(s) ILIATY (2.77)
I
Then using the chord diagram rule (2.56) which again is
(tr (--- H®OgH™O0,H"))

H—0O, int ti 04—Op int ti
= 3 gH-H inersections H<€—2pAp/N># A e (6—2pApB/N># AT e

chord A A,B

Y

(2.78)

and only considering @ — H intersections!, we get

-1 —H intersections
\iQ— (Z) Z'S Z Tr (iji@ﬁS) — <628p/N>#O H int "
1 Z I I

chords s

— efZSpﬁ/N

s (2.79)

— o~ Allaas

— e*A<E>/ZAdS

where n = n if there is no matter in the bulk.
Now we want to read off an operator relation from this equation involving traces on
both sides of the equality. However, the ¢ on the right hand side is the expectation value

<é> = Aags (1) = Maasn.

To make progress, we notice that

(%)2 <152> T (2.80)
(&)2 <é>2 T (2.81)

X A 2 ~
<€*£A/1Ads> _ €—<€>A/ZAdS — 1<A) Var(g) + 0(63) (282)
2 \lags

Therefore, to truly read off an operator relation from inside an expectation value we need to
rearrange (2.79):

—1 79 R R ~
() i s - (s (2 Vo)
I

s lAas

SO

IThis amounts to only considering free fields in the bulk
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so we can now make an operator statement of the form

O AN R Y. L AN )
(V) T wamiam e () ) (284)
1

lads

This is a modification of the relation proposed by Lin in [55], which accounts for the finite
contribution of the variance of /. Nontheless, it recovers the salient feature that Fermion
bilinears of size s across two copies of SYK probe the exponential of the length of the
wormhole.

To consider probing the length with the lightest possible fields in the bulk, we can choose
s =1 to get

ZjQi LR Ny 1 1 2 5
— LN Tkt = e A laas _ var(/)
S ()

laas p

(2.85)
. 1 .
— o Allras _ /
e Z Nvar( )
In the triple scaled limit, this equation becomes
2 1 2
- j ZwLwR (222)B e Diaas _ var((). (2.86)

13 4sA\N

Thus, as more plainly seen by the case of s = 1, in the strict N — oo limit we recover
the form of the operator equation proposed by Lin [55].

Checks and analyses of the length operator

We can now check whether this operator equation recovers expected behavior before dis-
cussing how implement measurements of it on near-term quantum simulation platforms. As
one check, we should see that at large N, the operator recovers the expected Schwinger-
Dyson propagator for a two-sided SYK system. We now perform this calculation based off
of [41, 77].

The large N solutions SYK can be written in terms of

N

G (r ZG Z (T (0)), (2.87)
5(7) (2.88)

where G is the average two-point function and ¥ is the self-energy (contains loop-level
diagrams). In this notation, ¢, j = L, R and a indexes fermion number. The two standard
methods for calculating the G,%¥ EOM are 1) solve the Schwinger-Dyson equation using
melon diagrams (i.e. Feynman calculus for Majoranas) or 2) use the path integral.
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We follow [41] and use the second method to compute the anneal-averaged Lorentzian
path integral in Lorentzian time for the two systems.

/DJDwexp [——/dtZz/ﬂatW +ZZJ1p/dtZ‘Ifzp /%/Z(JLP)Q]
I

(2.89)
with N = <J127p> = % as in (2.48). First compute the [ DJ average just using Gaussian

integration? to obtain

(Z), = M/D¢exp [—%/dt;%aw;— %;(/dt;\ygpf

Then we perform the Hubbard-Starcevich transformation and multiply by 1

. (2.90)

1= [ DGSNGI(t.t) = Y wilr) (2.91)

_ N rsmig [ i 1 i i )
— /DGDZeXp[ 5 /dt/dtZ <G N;%(t)%(t) (2.92)
and also simplify the quadratic term in the partition function to be

%/Z(/dtz\y 4'Z/dt/dt G”tt . (2.93)

Now,

_l/ Z¢ 8t1/1
(Z), =~ VN7 / DGDY.Dy exp —@g / dt / dt's? G” ZW JLAC ) (2.94)

4p|2/dt/dt G”tt

Now that the exponential is bilinear in fermions, we can perform a Gaussian Berezin integral
to get

(Z), =~V Nn / DG DY~ N 5er(GE) (2.95)

with an effective action
S.4(G. ) = ilog(det (5,0, — iT¥)) Z / dt / ar (296G + '/]\V/(G”)) (2.96)

2f dwe—aw2+bm _ meb2/4a
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We now extremize the action to get the EOM,

0 =087 = 8§erf5G + 82;”‘52. (2.97)
Setting each partial derivative to 0 and using the identity
V(det A) = det(A)A™* (2.98)
for any matrix A, we get the EOM
Y = J GV (2.99)
G- atim (2.100)

Note this result is effectively already in the large N limit because the path integral (2.95)
has saddle points for N — co. Now we go to the conformal limit by also sending 57 — oc.
Converting to Fourier space, the EOM become

Y (w) = iJ* (G (w))P! (2.101)
1

Low energy means w < J and since ¥ oc J2, we can neglect the iw term in the second
equation. Converting back to time space, we get

YUt t) =i T2 (G (t, )P (2.103)
/ deGI (1, ), 8) = i6(t — t') (2.104)

The key insight is to now notice that in this limit, the master fields have a conformal
symmetry that leaves the EOM invariant:

. A(p-1)
() o (A f(0)) T St f(t2) (2.105)
G (ty, t2) (f;(tl)fj’.(tg)> AGij(fi(tl)fj (t2)). (2.106)

This suggests we can use the ansatz for a Lorentzian correlator in conformal field theory as
a solution,

| b
GY(t1,ty) = ————=~ ty — 1 2.107
(t1,t2) [i(t, — t2>|2ASgn( 1 2) ( )
Now we want to consider specifically the left-right correlator ¢ = L, j = R. If we assign
1
) = —————~ 2.108
Tl = @) (2:105)

fr(tr) = tanh (%) (2.109)
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then the conformal transformation in (2.106) yields after some trig algebra,

GHi(ty, tr) = b[ 1%)}%(—1). (2.110)

2 cosh(

Hence, we recover the conformal propagator up to a minus sign. The negative sign comes
from

1
sgn(————— — tanh(t 2):—1 2.111
en tanh(t/2) (tr/2) (2111)
for all t;, = tg > 0. As such, we are inclined to adjust the length operator equation by an
overall minus sign, or equivalently formulate it in terms of the two-sided propagator ordered
as Yy (YRyl) = =37 -1 (YFp) given the anticommutation relations between Fermions

{},vf} =0. (2.112)

This negative redefinition of the operator is also consistent with numerical checks discussed
in the next section.

We can now consider how to implement this operator in near-term digital and analog
quantum simulators and derive predictions for measurement statistics that we can match
with our bulk calculations.

2.3 Projective Measurement

The most simple form of measurement of the wormhole length one could perform is a projec-
tive measurement. This can be performed on digital quantum simulators, which implement
discrete gates on an array of qubits. Specifically, we can exactly map Majorana fermions
onto physical qubits via Jordan-Wigner transformations.

Digital qubit simulation

A system of N Majorana fermions can be encoded by N/2 conventional fermions classified
by either even or odd site number [77],

Poj1=1¢j + C} Paj = Cj — C; (2.113)
where j € {1,..., N/2}. Here we are using the following anticommutation relation conven-
tions

{c;,e;} ={cl, v =0 {cz-,c;} = 0ij. (2.115)

i)
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Figure 2.3: Numerical simulations of eigenspectrum for Hgy e with various pand N
The Jordan-Wigner transformation maps fermions ¢; onto Pauli strings via
Jj—1 Jj—1
cj = (H af)oj_, c;r- = (H af)a;' (2.116)
k=1 k=1

oX+oY . . . .o
with J;—L = % Using (2.113), we can express Majoranas in terms of Pauli strings through
the mapping

j—1 j—1
Poj1 = HO']-Z J]X, Poj = Haf O'JY. (2.117)
k=1 k=1
Then if we define the two-sided SYK operator
A P ;N (it | j—1 |
0= vruf=5> ([Iof oy @ (I]oF )o5. (2.118)
j=1 j=1 \k=1 k=1

the length operator neglecting the finite 1/N contribution in (2.84) becomes

0= —ZAT"S og(@). (2.119)
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Figure 2.4: SYK spectral form factor simulations.

and for s = 1, /= —plaas log(@).

Now to simulate relevant measurement statistics such as <é> and var(@), we need a way

to numerically simulate both the thermofield double state and the total SYK Hamiltonian
H=H,+ Hg.

For one copy of H LR, We use the same Jordan Wigner transformation and randomly sam-
ple the couplings J from a GUE with the proper variance. Figure 2.3 shows the eigenspectrum
for numerical simulations of an SYK Hamiltonian with the Jordan Wigner transformation
(2.118) in Python. As expected, the smoothness of the spectrum increases as N increases.
Moreover as p increases, we can observe the formation of the Wigner semi-circle law [77]

p(E) %\/4 — E? (2.120)
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Figure 2.5: Eigenspectrum of the O operator for various s and N.

which is expected from random matrix theory.
As a further check of our Hamiltonian, we simulated the Spectral Form Factor (SFF) [22]

(Z(B,1)Z*(B.1))
(Z(8))5

g(t) = (2.121)

where Z(3,t) = Tr <e‘5ﬁ _“E”> is the analytically continued partition function. Figure 2.4

shows plots of SFF holding various combinations of N, 3, and number of ensemble averages
fixed. As shown, increasing the number of samples decreases the fluctuations. Increasing N
drops the dip and ramp sections of the SFF. Increasing S decreases the ringing in the SFF,
as all observed in [22].

Now to analyze the behavior of the operator @ involved in the length definition (2.119),
we diagonalized the operator to find its eigenspectrum for various sizes s and number of
fermions N as shown in figure 2.5. Odd values of s exhibit a symmetric distribution around
0. Even values of s skew the eigenspectrum either to the positive or negative side. In both
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Figure 2.6: Simulations showing the negativity of <O> across 3.
TFD

cases, we can see that the eigenspectrum takes on negative values regardless of N, which is
problematic for the argument of the logarithm.

One alternative discussed in [56] is that that for N — oo and 8J — oo limit, the
spectrum of the propagator O in low energy states becomes uniformly positive. That is, we
should see the spectrum shift towards positive eigenvalues under expectation values of the
thermofield double state.

Constructing the thermofield double state

T
ITFD) = — Y e PELTERD/2 |n ) |ng) (2.122)

experimentally is a non-trivial task [23]. As a close approximation, we follow Maldacena Qi
[60] and use the thermofield double ansatz

|TFD) = e P/AMHL+HHR) | 1 (2.123)

where |I) is the infinite temperature state defined by
1 . .
W i) ) =0 V). (2.124)

In practice, |I) is a maximally entangled state between H; ® Hpg.
Performing the Jordan Wigner transformations discussed above onto both a left and
right Hilbert space, our numerical simulations show that actually the expectation values
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.

Figure 2.7: Digital quantum circuit implementation of <E>
TFD

<O> are uniformly negative in [ (see figure 2.6). Rather than becoming positive for lower
TFD

temperatures, we instead see that at least for low N, the expectation value asymptotically
approaches zero from -1 as f — oo. The fluctuations are due to finiteness in numerical
sampling.

These numerics, along with the negativity of the analytical conformal result in (2.110),
lead us to propose that the SYK definition for the length operator from [55] (with s = 1)
should be modified to

y i i
j=1

i=1

so that we can now properly take the log.

Then using this definition, we can construct a quantum circuit that computes the ex-
pectation value (TFD|{|TFD) as follows. The simplest way to get these measurement
statistics is to perform a type of fidelity measurement, taking the inner product between
the state ¢|TFD) and |TFD). Equivalently, we can implement a circuit which trans-

forms { = —ZA% log(—@) into the thermofield double basis via conjugation of Urrpp where

Urpp |0) = |[TFD), as shown in figure 2.7.

To simulate the measurement statics from this revised operator definition in the ther-
mofield double, we use a trick of converting the two-sided propagator into a one-sided one.
Using the identities

Iy = —iwf 1), (2.126)
(Hy — Hg)|I) =0, (2.127)
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Figure 2.8: Numerical SYK simulations of wormhole length expectation value through time.

we can simplify

Grr(t) = N TFD|Z¢ J(OITED)
%% <I|6_5/4(HL+HR)ez‘(HL+HR)tij,¢]Re—i(HL+HR)t6—5/4(HL+HR)|I>
J
11
= o O (L[l Lyt (/220
J
. " - (2.128)
_ _NZ (Ie”Mrapy (/2 4 2it)p; (0)|1)

- NZ ZTFL (Lo (82 + 2it)y7(0))
=N ZW% UE(B/2 + 2it)6H(0)) = Gro(B/2 + 2it),

Here we used also that {wiL,w]R} =0 = [HL,wﬂ = 0, and that the trace over a
maximally mixed state with operators only acting on the left side is equivalent to a trace
over the identity operator only on the left side [71].

We are currently simulating measurement statistics of this wormhole length circuit using
the simplified single-side correlator in (2.128), and preliminary results of these simulations are
shown in figure 2.8. These plots show the time evolution of the wormhole length expectation
value, for N = 6,12,18, f =5, p = 4, and 3 ensemble averages. Evidently, in the conformal
semi-classical limit as SJ/N — 0 (the SYK analog of the JT semi-classical limit where
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GnB/d, — 0), the SYK numerics start to converge to the conformal Schwinger-Dyson
prediction up until a plateau at approximately e [47]. Concretely, using the convention
from [61], this dotted black line semi-classical prediction is

1/2
D 1o b[;] b~ 053 (2.129)
[ads Ié; cosh(%)
and the blue dots are the simulation of
0t
)~ grog(—Gra(8/2 + 2it)). (2.130)

lags

We are scaling up these simulations to be implemented on the Lawrence Berkeley Lab
NERSC supercomputer, so that we can achieve larger N, and also simulate the variance
var() = ((2) — (/)2. Through these simulations, we will be able to compare finite-N results
to our bulk measurement statics predictions in (2.44) and (2.45), and potentially provide a
concrete experimental prediction for the N at which holographic geometric features begin to
emerge in dual quantum mechanical systems.

2.4 Continuous Measurement

In addition to projective measurements, we can also consider continuously measuring the
length operator in dual SYK systems. Such measurements are most feasibly implemented
in analog simulation platforms, such as trapped ions or cold atom cavity-QED, in which
quantum gates are implemented through continuous operations on an ensemble of molecules
or atoms. Commonly, these interactions are often engineered using optical setups.
Accordingly, we can employ a technique known as “input-output theory” from quantum
optics to calculate the variance in the measurement of the wormhole length. Input-output
is analogous to an S-matrix formalism for quantum measurements, in which input light that
scatters off of the system of interest picks up relevant phase information that is read out in
the outgoing light [87]. In fact, by extremizing this variance calculated from linear response
theory in input-output, we can derive an estimate of the wormhole length “standard quantum
limit”—the minimal uncertainty allowed by Heisenberg uncertainty in measuring the length.

Toy measurement model

To motivate the procedure for analyzing the measurement theory of wormhole length in more
realistic analog simulators, we first start with a toy model. Consider the renormalized JT
gravity wormhole length coupled to a coherent drive of probe light as shown in figure 2.9. In
this section we use the notation L for wormhole length. We model the incoming light and
scattered light as a quantum mechanical bath, made up of harmonic oscillators.
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Figure 2.9: Schematic of toy model of continuous measurement of the wormhole length.

We can model the full system-bath-interaction Hamiltonian H=H JT + ﬁb + FImt as

. P2 ; >
H= ot %meﬁ e~ has N " wblby — iV2y | giLX. (2.131)
eff b k k

Here we posit a linear coupling gi between the position L and the bath quadratures X =
(b + b,z)/ v/2 in modes k. We have chosen a phase convention for H;,; in which g, is purely

imaginary for cleanliness in subsequent calculations. The bath modes satisfy [bi, Z;H = 0ij,
and [L,b;] = 0.

Here we posit a linear coupling gr between the position L and the bath quadratures
X'k = (Bk + 52)/ V2 in modes k. We have chosen a phase convention for I:Imt in which
gr is purely imaginary for cleanliness in subsequent calculations. The bath modes satisfy
[b,-, BT} = 6;;, and [L,b;] = 0.

J
The Heisenberg equations of motion @ = i[H, O] for the system and bath are:

L= P/meg (2.132)
X 21 e . N
p = TABTR ~Liass 2N g, X, (2.133)
b k
X5 = wi.Ys (2.134)
Vi = —wi Xy + iV2g5 L (2.135)

The goal is to express L(t), P(t) in terms of input and output field modes. To do so,
we need to solve for the time evolution of the bath quadrature Xy (t) = (by(t) + bl.(2))/v/2.
Starting with bf(¢),

by, = qwnbl, + V20,1 (2.136)
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or equivalently

9 )
<§ - zwk)bL = VgL (2.137)

which is a standard first order inhomogeneous ODE in scattering theory. Two Greens func-
tions which satisfy it are

Gin(t, 1) = Ot — t')ert=1) (2.138)
Gout(t, 1) = —O(t' — t)e™rt=t) (2.139)
where
1, t—=t>0 00(1)
Ot—t)=<" , =0 2.140
(t—1t) {07 F -0 5y (7) (2.140)

is the Heavyside step function. For the “in” modes, solving the ODE with G, yields

~

bi(t) = bl (to)e™ 1) +xf/ dt'Gin (8, 1) g L)
(2.141)
_ B;rg(t()) iwg (t—to) + \/_/ dt'e iwg (t— t)gkfz(t,)

Similarly for by (t) we get
t
bi(t) = by (to)e ™rlt=t) (/2 / dt'e= =g L(1) (2.142)

s0 Xy (t) = (br(t) + bl.(t))/v/2 corresponding to the ingoing modes is

t

~ 1 /- ) ~ ) ) , o
Xk(t) — E <bk(t0)€fzwk(t7to) + bL<t0)ezwk(t7t0)> + / dt’ ( twg (t—t") eflwk(tft ))gkL(t/)
- (2.143)

Inserting this expression into the momentum dynamics (2.133),

5 2laasmes oL _ - o (e
P — /lads _ T (bk to)e —iwy(t—to) 4 pt (to)elwk(t to))
¢b Z k

+ \/5/ dt/ Z |gk|2 <6i(wk+wc)(t—t’) . e—i(wk—wc)(t—t’)>e—iwc(t—t’)z(tl).
N .
(2.144)

In the last term we have included some characteristic frequency w, of the system, which will
be used momentarily to make the Markov approximation and the rotating wave approxima-
tion (RWA).

In standard quantum optics input-output theory, w. would be the fixed cavity resonant
frequency. In JT, it is not immediately clear what this parameter should be. One natural
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solution is to set w, to be the mechanical frequency when approximating V;r as an oscillator
around the equilibrium position Ly,

Q e—Lo /2lads .

™ (2.145)

We = Wy =

The Markov approximation is valid when
lwe — wel(t —t) > 1. (2.146)

This relationship can be satisfied when driving the system on resonance and considering late
time measurements. As such, we assume that by measuring the wormhole length with a
coherent drive and negligible detuning, A = w. —wy ~ 0, we equilibrate the wormhole length
around its harmonic oscillator equilibrium

Lo = (L) + 4L (2.147)

In this case, we should expect that any transients 0L from radiation pressure will average
out to a constant value over long measurement times so (2.146) holds.

We are still left with the counter-rotating term (the first term in the last line of (2.144)),
which is taken care of with the RWA. The RWA is valid when

Aw = wy, — we < Wy, + we (2.148)

Therefore, we can take®
g =9=k (2.149)

to be constant over frequencies, which allows us to define

" 1 /- . ~ )
X =3 E(bk(to)e”’k(tt‘)) + b,t(to)em’“(t’t())). (2.150)
k

Then with the above approximations (i.e. Markov and RWA),

. t
p 5 \/5/ dt’ Z ’gk|2 (ei(UJk‘i’wc)(tft’) - e*i(wkfo.w)(tft/)>e*iwc(tft’)f/(t/)
—co k

¢ Gkt gy : N 2.151
= 2/{/ dt’ <e w) e — 1>5(t — t')e Wt (1) (2.151)

K ~
—L(t
i
since ffoo 5(t — t')dt' = 1/2 so (2.144) becomes

L 2agsmes _j, i K
p =28 elllaas _ /9 X7 (t) — —
& ) V2

3Note that since g is purely imaginary, x = ¢? < 0 in this convention.

L(t). (2.152)
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Now we can repeat this process but for X out(t), which are the field modes that we actually
measure. Using the other Greens function G, (t,t') in (2.139), the time evolved “out” bath
operators become

bL(t) = bl (t;)ert—t) / dt' e+ g (L(t') — Lo) (2.153)
t

br(t) = by(ty)e x4 / dt'e= =) g (L(t') — Lo) (2.154)
¢

Note the integral terms have changed sign from the “in” counterparts (2.141)-(2.142) and

the bounds are now defined the boundary conditions at future infinity ¢; — oco. Following

the same approximations as above, we define the out modes as

| | L
Xty =Y G (bk(tl)e_wk(t_“) + bL(tl)eWk“—tl)) (2.155)
k

and the momentum dynamics in terms of them becomes

o 2lpasmes _j K 2
P =220 Hlaas o X () + —L(1). 2.156
pe (t) 7 (t) (2.156)
Subtracting (2.156) from (2.160), we derive our input-output relations
XU () — X™(t) = /RL(t). (2.157)

Now suppose that the input bath mode is a coherent laser with drive frequency wy such
that

Xin(t) = <X”> +Em(t). (2.158)
where <X m> is the classical contribution at wy and £7(t) are the quantum fluctuations.

We can configure <X' i”> such that the force of input bath on the particle with m.g cancels

out the force from the zeroth order constant term in Vjr, which occurs at the equilibrium

position
PR B
Lo = —lagsln( /2—2 <X”> 2.159
0 AdS n( 2 Inqs et ) ( )

Evidently, the act of monitoring the wormhole by introducing a linear potential drive
stabilizes its length. This effect is shown in figure 2.9. Note if we set <X’”> = 0, then
Ly = oo which is the equilibrium that one would expect for the isolated wormhole when
there is no bath coupled to it.

Expanding Vjr to first order around this equilibrium position, the momentum equation
of motion becomes
K

P = —mewl, (L(t) — Lo) — V2rE™(t) — >

L(t) (2.160)
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where

@ e Lo /2laas
o

is the mechanical frequency of V7 when approximated as a harmonic oscillator.
The expected noise spectrum in measuring L is given by the Power Spectral Density
(PSD), which is the Fourier transform of the autocorrelation function

Spp(w) = / are (L(1)L(0)) (2.162)

(2.161)

Wm =

To derive it, we solve the equations of motion for Lin frequency space and derive the relevant
transfer functions.
The equations of motion in frequency space are

—iwL(w) = P(w)/Meg (2.163)

—iwP(w) = Fyd(w) — <meﬂcwfn + E)ﬁ(w) — V2KEM(w) (2.164)

where we have labeled the constant term
Fy = megw? Lo (2.165)

Solving (2.163) - (2.164) algebraically, we arrive at
L(w) = xex (Fod(w) = V2rE™ () (2.166)

and we obtain for the transfer function
1
Meg(w2, — w?) +

XLx = (2.167)

K .

2

Repeating this process for the output EOM (2.156), we can also get L in terms of é"“t(w),
L(w) = XLx <Fo<5(w) —V 2n§°“t(w)) : (2.168)

Now putting the pieces together, we want to find an expression for the noise power
spectral density (PSD) of L, Spr(w), as a result of measuring the output modes X°“(w). To
do this, we first relate Sp; to S using (2.168) and the Wiener-Khinchin theorem,
2m6(w — w')Spr(w) = (LT (w)L(w'))

=276 (w — )2k xLx | Sk (W)

)

+ el (E3S()0() — Fob(@)VaRE™ () — Fod(w)VIRE™ (w)'
(cross terms from constant?grce in expanding about L)
— 2m0(w — )2k 2S5 () + Ixex | (FRO(w) — 2V2RFoé ™ (w) )
(2.169)
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where we have simplified in the last line using delta functions and the hermiticity of X.
We now further express S¢4 in terms of S¥y. From (2.157) and (2.166),

£ (w) = xxx€M(w) + VEXLx Fod (w) (2.170)

where
Yxx =1 —V26yix (2.171)

so S¢4% becomes

27T5(w . UJ/)S})(U;(((JJ) _ <éOUt(w)Téout(w/)>
= 276 (w — ') xxx[*S¥x (W)

+ (KIx PFRO() + VRFE™ (@) (xXex + XxXix) )
(2.172)

after again applying the delta functions and Hermiticity. X
Substituting (2.172) into (2.169) and expressing £°“(w) in terms of " (w) via (2.170),
we get
216 (w — w')Spr(w) = 2md(w — )2k xxx [*|xpx[*S¥x (W) + <X1§i”> +{x2)  (2173)
with
x1 = 2V|xox|*Fo (55(00)(X§<XXLX + XxxXLx) — \@XXX) (2.174)
X2 = Ixpx|PFyd(w) (1 + 262 |xx|? — 2\/§/€XLX5(M)> (2.175)
Evidently, because of the constant Fy term, the noise PSD Sy (w) depends on expectation
values <fm> of the ingoing bath quantum fluctuations.
To obtain the SQL, we now “extremize” the PSD Sp,(w). That is, we assume the

quantum fluctuations at late measurement times average out, <(§m> = 0 and take X™ to be

a coherent state so that S%y = 1/2. We also choose the minimal decay rate

e—2Lo/laas L(%

|k*| = : (2.176)
64G%/ 14 4s 207
which solves 08,1 (" )
LL\W = Wn
= 2.1
o 0 (2.177)
All together, this yields
2L0/lAdS 2 l4 2
Sia (o) = o Claash 2.175)

L



CHAPTER 2. QUANTUM MEASUREMENTS OF WORMHOLE LENGTH 44

|JL112 J1]2 g I,

fA; Aqa(z)
. Wa

C,u‘d

------- iy -““"33

Figure 2.10: The SYK cold atom cavity model setup derived in [85]. The authors show how
one can experimentally engineer the random couplings .J spatialized speckled light pattern,
with random detunings Ag,.

Then we can approximate the SQL variance in L around a bandwidth Aw = w,,:

o t/2 29 "
AL%’QL :/ dw—SIIl LW/ )SLL( ) —LZ(W )wm
ony (2.179)
e?aas GRlaqs Py
L? '
0

where we have used sin(wt/2)/w? ~ t?/4 — O(w?) and a measurement time of ¢ ~ 1/w,.

While this was a somewhat contrived toy model, it demonstrates how the techniques
of input-output theory can be applied to determining the standard quantum limit of the
length of the wormhole. Moreover, from this analysis we have gained some important pieces
of intuition. Namely, that monitoring the wormhole with a linear drive that couples to its
length can stabilize the otherwise exponentially decaying JT potential.

Analog cold atom cavity simulation

The authors of [85, 6] present a scheme for a cavity QED trapped cold atom setup which
can be summarized as follows: two lasers are put into the cavity—the drive beam which
traps the atoms, and the “light shift beam” which provides a speckled phase mask on the
atoms, resulting in a spatially dependent AC stark shift. The resulting randomization of the
atom-drive detuning Ay, = wg — w, encodes the SYK couplings J. A diagram of this cavity
setup is shown in figure 2.10.

In their setup, the model the drive lasers as classical and consider only the semi-classical
Rabi oscillations which they induce in the fermion energy levels. For our purposes, we want
to quantum mechanically model the measurement process. To do so, we need model the
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incoming light as a bath of harmonic oscillators, dominated by a classical coherent drive
component.

Two experimental configurations for this drive laser are possible: on-axis in line with
the cavity, or off-axis from the cavity. In the former, the probe light will couple directly to
the cavity modes, which then in turn couple to the atomic modes. In the latter, the probe
light couples directly to the atomic modes. In what follows, we proceed with the on-axis
drive setup for its greater simplicity in modeling the measurement process: the on-axis drive
provides the bath which is used for homodyne detection for the wormhole length. In the
off-axis drive case, we would to introduce a separate bath to perform this measurement.

Accordingly, the microscopic Hamtiltonian of the setup modified from the original pre-
sentation in [85] is:

H=H,+H.+H,+H;+ H,.+ H., (2.180)
H“—Zlﬁﬁw (nl+%m>@m (2.181)
s=e,g at
H, = wala (2.182)
H, = / Prw, ()] (1) e (r) (2.183)
H, ::ZE:(deLd (2.184)
k
0
H, = §/d2fr (gc(r)dwl(r)wg(r) + h.c.) (2.185)
Hay=1iY g0 (d*&k . d,ia). (2.186)
k

Hy, is the motional degree of freedom for the atomic center of mass, with 14,1, being
the ground or excited field operators. The potential V; is stated to be the harmonic trap
potential. H. is the cavity, H, is the energy of the excited state of the atom with frequency
W, and Hd is the drive beam. Hac and Hcd are the atom-cavity and cavity-drive interaction
terms, with f. and g being the respective coupling strengths. We have assumed a generic
damped driven cavity-drive interaction for ffcd with g real.

Suppose that the drive frequency of the laser is set to wy;. We now go to a frame co-
rotating with wy via the transformation

H—-UHU - A (2.187)
with U generated by [87, 20]

e = [ @il + il + oy dlds (2.188)
k
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After computing the Baker-Campbell-Hausdorff commutators, the rotating frame Hamilto-
nian yields?

H = Hkt + AchLTCL — /dQTAda(r)z/lebe + Z Akdd;rﬁdk -+ E / d27’gca’¢i¢g —+ gcwgwecﬁ

k#d
k
(2.189)

with Akd = WE — Wy, Acd = We — Wy and Ada(r) = Wq — wa(r).
Before expanding about a coherent drive, we should first understand how the drive field
induces cavity losses. The equations of motion of a and dj, are

. R Y/ L i .
4= —1A40 — g / dQTgcwgwe + ngdk (2.190)
k

A

dk = —z'wkcik - gkd . (2191)

We can solve the dj equation using either incoming or outgoing Green’s functions. For the
incoming modes,

t
di(t) = dy(tg)e rt=t0) ——gku/ﬁ dt' e 7P (Wemwr) (=) gmiwe(t=t) g (41, (2.192)

—00

We now make the Markov approximation by assuming that |w. — wg|(t — t') < 1 such that
e~ we(t=t) 5 §(t—1t'). In the Markov approximation we can also treat the couplings as roughly
constant over frequencies so we can define the damping rate as g = g = \/s. Hence,’

di(t) = dy,(to)e =10 _ 112§a(t). (2.193)

Substituting dAk(t) back into (2.190), the cavity equations of motion become

d@)::(—uﬁw4—g)d@)+—v%dm-—i§:/}Fnﬁd§we (2.194)

with dg, = 32, di (to)e™ s(10),
Now we assume the drive is a coherent laser and expand the bath and cavity modes as a
classical part plus quantum fluctuations

i — a+a (2.195)
dip — € +d (2.196)

de~wat and UTd,U = dye ™t so the time

[« 3
q)
I

4The cavity and drive operators transform as Ut
dependence cancels in counter-rotating terms.

5[ dto(t—t') =1/2
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where a = Tr(pa) and ¢ = Tr (pczm> This form arises from transforming the Hamiltonian
with displacement operators H — D'(a)Di(e)HD(¢)D(a) [12]. Taking the expectation
value of (2.194) and assuming that <z% i dQT‘g:@ZJ;lZ)e> = 0, we can solve for

a(t) = a(ty) exp [(—iAcd + g)(t — to)} — VEe/ (=il + K/2). (2.197)
Assuming ty — —oo, this constraint on « and € becomes

ke
=Y - 2.198
@ iACd — K / 2 ( )
Using this relation and plugging the coherent drive expansions back into (2.189), the
Hamiltonian becomes

B =+ Bt~ [ @raa(e)ili,+ [ @i, + 8 +ivi(id - da) + Hu
(2.199)

b(r) = %gc('r) (a+ m:l/_—fi;/z> (2.200)

If we assume that /k > Ay, then a &~ —2¢//k and H,..¢ has the form
le|?  2e* . 2 ot

Hyut = A (47 \/_ \/_ ) + z(2€dT — 2e*d + /real — \/Ea*d). (2.201)

Since the incoming drive is a coherent laser at frequency wy, we have also assumed that any
fluctuations Ay are negligible.

From (2.199), we can see that the cavity modes couple to @@g. We can now follow the
procedure in [85] by performing the following steps: 1) adiabatically eliminate the excited
state, 2) perform a Schriefer-Wolf transformation.

1) We assume |Ag, ()| to be the dominant energy scale and adiabatically eliminate the
excited state, so that

with

L DY,
= . 2.202
o = o (2202)
In this case, the Hamiltonian (2. 199) simpliﬁes to
H = Hy, + Aggata + / ﬂ)g + z\/_< td—dta ) + Hyug. (2.203)

2) Now we re-arrange the Hamiltonian as H = Hy 4+ V with all cavity-atom interactions
relegated to V:

T : ~t 3 Gta Ata o K|Qge(r)el® Tt
Hy=Hy +ivelald—da) + Aga'a+ [ d "X (2 — 112 )1/) @Dg + Hyug (2.204)
da

N 9 2 o A
V= / d%%am@% +alol + oa. (2.205)
da
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with

Qgc 7
o= / Fry 21Ad )wg% (2.206)

Then we perform a Schrieffer-Wolf transformation, which decouples the atom degrees of
freedom from the cavity degrees of freedom. Specifically, the transformation is e eSHe™S =
Hy+ (V+[S,Hy)) +[S,V] + ... with S chosen such that V + [S, Hy| = 0.

As shown in [85], this Schrieffer-Wolf transformation will separate the Hamiltonian into
a one-body and two-body terms. Then after performing a change two the spinless Dirac

fermions
- Z ¢i1 (T>ci17 (2207)

the Hamiltonian takes the general form

Hepy = ZEHC“CH + Z J1122J1J2 i1 ’LgcjléjQ : (2.208)
11121394
(H1) (H2)

where the couplings J are functions of the spatially randomized detunings Ay, and the two-
body term H, provides the effective SYK Hamiltonian. In [85], they tune the one-body
strengths €;, so as to make the first term H 1 vanish.

However for our present purpose of measuring the length operator, a slightly different
approach will be worthwhile. In particular, the perturbation V above contains a relevant
o g ()

¥ 2 gc T ata Tt
V> /d A, ay, @/)g (2.209)

If we arrange the cavity setup such that half of the atoms are labeled as L and half of
the atoms are labeled as R, then this term above provides a potential measurement probe
of the wormhole length operator. Namely, the cavity photon occupation number operator

~

N = a'a couples to a version of the exponentiated length operator f d%@@@[)g with coupling

Qge(r)[?
1Agy
Alternatively, instead of adiabatically eliminating the excited state, we can keep the

excited fermionic in order to achieve an effective left-right SYK copy distinction with the
following ansatz

e = P* (2.210)
Py — P8 (2.211)

In this “zipped” ordering of left-right fermions, we would instead recover a coupling of the
2 A, A

form f d%%ﬁﬁ&wiwy, which also provides a measurement probe of the wormhole length

via cavity photon occupation number. In upcoming work, we will explicitly perform this

computation, and apply the input-output techniques from the previous section to compute

the wormhole length standard quantum limit in this more realistic cavity QED model.
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Chapter 3

Future Directions

Here we briefly sketch some possible extensions of this thesis work or ideas it generated for
further investigations of quantum measurements in quantum gravity.

3.1 Bulk measurements

What dynamical or geometric phenomena in the bulk arise from measurements in the bound-
ary theory? Various investigations into this question have been conducted, either considering
how quantum measurements work for a bulk observer or what bulk dual properties might
exist for boundary measurement-theoretic quantities [45, 52, 1].

We can begin to make progress on this question from the formalism of measuring bulk
holographic observables in SYK such as wormhole length discussed in the previous sections.
Recall that the length operator definition (up to a minus sign) takes the form

. N
D = et 3.1
j=1

In other wormhole literature, Jafferis and Gao [30] discovered a mechanism by which
a wormhole could become traversable via a double trace deformation that sends negative
energy into the bulk. Maldacena and Qi extended [60] this work and showed that one could
model a traversable wormhole by introducing a coupling between two SYK systems of the
form

H=Hy+ Hp+ Hy, Hiy =ipy iyl (32)
J

Note that given our operator definition for ¢, we see that
Hypy = e /8/1nas (3.3)

when 1 = 1/N. This connection opens up the possibility of interpreting the interaction
energy which makes the wormhole traversable as being a measurement of its length.
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Moreover, it was found in [67, 79] that introducing matter insertions into the path integral
can have the effect of stabilizing the length of a wormhole. These same matter insertions were
what we used following [55] to break the time translation symmetry of the bulk Hilbert space
of DSSYK and re-derive the form of the length operator above. Similarly [40, 42] showed
that the process of making the wormhole traversable is analogous to the splitting a Wilson
line of a pair of charges, which can probe the length between them. It was discussed in [79]
that these matter insertions have the same conglomerate effect as adding the Maldacena
Qi non-local interaction which makes the wormhole traversable—mamely that the length
stabilizes.

We had observed this length stabilization effect in a separate context of continuously
measuring the length of a wormhole. Thus, by making these connections between matter
insertions, traversability of wormholes, and length stabilization more rigorous in future work,
we can perhaps contribute an interpretation that the act of measurement of wormhole length
in the boundary introduces a process by which a wormhole becomes traversable in the bulk.

Moreover, we can intepret this question regarding the connection between bulk and
boundary measurements in a more field-theoretic sense. If we actually wanted the bulk
phenomena directly corresponding to a continuous boundary measurement using quantum
optics, we would need to explicitly introduce gauge fields into the JT action. By introducing
this perturbation to models of JT gravity with matter [49], we will study what dynamical
gravitational features arise from the measurement process.

3.2 Further measurements of Hawking radiation

We discussed protocols to model measuring the purity of Hawking radiation. We can further
extend this analysis through the language of quantum channels. As explained, making the
boundary conditions of AdS, absorptive has the same effect as coupling a heat bath with
Hilbert space Hpg to the black hole system Hg. We can consider treating the black hole and
bath as an open quantum system, defined by the Hamiltonian

H=Hg+ Hg + H;; (3.4)

where the black hole and environment are coupled via an interaction H;,;. The general time
evolution of an open quantum system in the Kraus representation is given by

p(t) =  Kap(0)K]. (3.5)

Under the Markov/stationary approximation, this leads to the familiar Lindblad “master
equation”
. : 1
p(t) = —ilHs, p(t)] + Y | Lap(t) L] — S{L{La p(1)} (3.6)
a>1

with Lindblad operators L,.
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Previous work shows that both Markovian (time-local) or non-Markovian (time-nonlocal)
baths can produce features resembling black hole physics. In [35] they analyzed weakly cou-
pled Markovian baths with temperature T' = 0 and calculate that the von Neumann entropy
S(t) = —Tr(p(t)logp(t)) can exhibit Page curve-like dynamics. The papers [18, 80, 24]
consider the SYK model of black holes coupled to non-Markovian baths and similarly ob-
serve an effective Page curve. These non-Markovian environments, moreover, provide richer
system-bath entanglement structure as they are characterized by either by finite nonzero
temperature or a frequency dependent spectral function. They also seem apt for modeling
black hole evaporation: similar to the Hayden-Preskill decoding protocol, non-Markovian
systems contain “memory” of past modes.

One simple non-Markovian model to study would be SYK linearly coupled to a bath of
harmonic oscillators:

N
1
Hs = Hsyx = 4 > TrXiXixex (3.7)
okl =1
Hipy = kY x[bi + by (3.9)

where k = GnC/(3¢) is the coupling between the black hole and bath derived in JT from
25].
We could then consider calculating the (PSD) of this interaction,

Suv) = [ SLe 0] (3.10)

which gives an observable prediction of the black hole noise power, and can be used to
calculate the decoherence dynamics D(t) in a dephasing channel of the form

_ Poo(0) e P p1(0)
plt) = (GD(t)PTo(O) p11(0) ) ' (3:11)

3.3 QFT in curved spacetime measurements

Considering quantum fluctuations to a classical GR background has been a lucrative semi-
classical framework for analyzing quantum gravity. In this context, “Unruh DeWitt” detec-
tors have been derived, which provide a particle-in-a-box model of a detector with response
function to be excited to energy E given by [86]

P(E) = (B0} P [ [ are T e olatr D). (12
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We could consider placing such detectors near a black hole or in an accelerating frame
and consider the Glauber coherence functions it could detect. Derived by Roy Glauber [36],
these coherence functions ¢(™ quantify coherences of a field and physically corresponds to
the joint probability of detecting n photons at spacetime locations (ry,t1), ..., (rn,t,). For
the electromagnetic field, they are given by

G (pyzr .. x) = Tr (pE* (1) ... B (zn) B (x,) ... E+(x1)> (3.13)

and the normalized coherence functions are

G(l) (.I'l, ZCQ)

W (p: 31, 1) = 3.14
g (,0 1 2) \/G(l)(xl’xl)G(l)(.TQ,ﬂfQ) ( )
GO (2, a5i 00, 1)
@) (. = S :
e ] Py v ppy e
(3.16)
GO (2y,..., 00, 0p,...,21)

. _ 1, y Ly T, y 41 . 3.17
9" (p,x1. .. xy) GO (21, 1) ... GV (2, 20) e

It is a fascinating result of quantum optics that for a thermal Gibbs partition function
¢® = 2: For a pure state that exhibits sub-Poissonian statistics, ¢ < 2. Thus exploring
the measurement statistics from detectors in curved spacetimes using models such as Unruh-
DeWitt detectors could provide another way of analyzing the purity of Hawking radiation
or other relevant gravity observables.
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