

Benjamin Knepper

Berkeley, CA

bknepper@berkeley.edu | 310-633-4655 | [Website](#) | [Inspire HEP](#) | [LinkedIn](#)

EDUCATION

University of California, Berkeley , College of Letters & Science	Berkeley, CA
<i>Majors:</i> Physics (with honors), Philosophy; <i>Minor:</i> Mathematics	08/2023 - present
Physics GPA: 4.0/4.0	B.A. in progress for 12/2025
Cornell University , College of Arts & Sciences	Ithaca, NY
<i>Majors:</i> Physics, Philosophy	08/2020 - 05/2022
Cumulative GPA: 3.77/4.0	

RESEARCH EXPERIENCE

UC Berkeley Physics Honors Bachelor's Thesis	Berkeley, CA
<i>Theoretical Student Researcher</i>	03/2025 - present
<ul style="list-style-type: none">Calculating the “standard quantum limit” of measuring the length of a Jackiw-Teitelboim gravity wormhole in the Hartle-Hawking state, using the gravitational path integral and input-output linear response theoryIdentified the Sachdev-Ye-Kitaev dual operator of wormhole length via chord diagrams and Krylov complexity in the triple-scaled limit, and verified it recovers the Schwinger-Dyson conformal propagatorDevising both digital (qubit) and analog (cold atom cavity) experimental implementations	
Advanced Quantum Testbed (AQT)	Berkeley, CA
<i>Theoretical and Experimental Research Collaborator</i>	08/2024 - present
<ul style="list-style-type: none">Developing a protocol to measure an effective “Page curve” in chaotic many-body quantum systems, relating out-of-time-order correlators (OTOCs) to Renyi entropy and quantum Fisher informationWrote a successful research proposal to simulate this measurement on AQT superconducting qutrits, with quantum information scrambling generated by pseudorandom unitariesCoding OTOC simulations in Google Cirq software for an experimental test underway in winter 2026	
Lawrence Berkeley National Laboratory	Berkeley, CA
<i>QuIPS (Quantum Invisible Particle Sensor) Experiment Researcher</i>	12/2023 - present
<ul style="list-style-type: none">Collaborating on Geant4 Monte Carlo simulations of unique first-forbidden β-decays and analyses of signal-to-noise projections for the upcoming QuIPS beyond-standard-model searchDesigned optimal configuration of particle physics calorimeters surrounding an optomechanically levitated nanosphere, achieving a QuIPS detector sensitivity to a sterile neutrino coupling of 10^{-3}	
Network for Neutrinos, Nuclear Astrophysics, and Symmetries (N3AS)	Berkeley, CA
<i>Theoretical Student Researcher</i>	08/2023 - 12/2023
<ul style="list-style-type: none">Initiated a phenomenological model to detect ultra-light dark matter from primordial black holes using asteroseismology and observations of oscillations in relativistic stars	
University of Chicago Enrico Fermi Institute	Chicago, IL
<i>UChicago Temporary Research Professional</i>	05/2023 - 08/2023
<ul style="list-style-type: none">Measured blackbody spectrum of the GigaBREAD experiment with a Vector Network Analyzer to determine system noise temperature, confirming sensitivity to $O(10)$ GHz resonant modesPerformed Fourier signal analysis of the thermal noise which identified a contaminant backgroundWrote Python data acquisition scripts for the current best dark photon limit of 10^{-12} in $[10.7, 12.5]$ GHz	
Fermi National Accelerator Laboratory	Batavia, IL
<i>D.O.E SULI (Science Undergraduate Laboratory Internships) Intern</i>	01/2023 - 05/2023
<ul style="list-style-type: none">Performed optical ray-tracing simulations in FRED software to characterize focusing errors of signal photons onto a Superconducting Nanowire Single Photon Detector in InfraBREADDesigned an optical configuration involving a Winston Cone and parabolic reflectors that improves quantum	

sensing efficiency by 55%, even with misalignments from cryogenic cooling and dark matter halo velocity

Millennium Institute of Astrophysics

Research Assistant

Santiago, Chile

06/2022 - 09/2022

- Modeled the transit photometry and radial velocity data of a NASA TESS exoplanet candidate in Python, leading to the verification of the novel warm jupiter planet TOI-6628b
- Coded with Bayesian parameter optimization algorithms such as Markov Chain Monte Carlo (MCMC)

PUBLICATIONS

In Progress:

1. B. Knepper, M. Karydas, D. Carney, J. Sonner. "Quantum Measurement Theory for Holographic Wormhole Length." *To Appear* (early 2026).

Peer Reviewed:

2. G. Hoshino et al. (GigaBREAD Collaboration), [*Phys. Rev. Lett.* 134 171002](#) (2025).
3. M. Tala Pinto et al., [*Astronomy & Astrophysics* 694 A268](#) (2025).
4. S. Knirck et al. (BREAD Collaboration), [*Phys. Rev. Lett.* 132 131004](#) (2024), *Editor's Suggestion*.

Manuscripts:

5. B. Knepper, A. Sonnenschein, S. Knirck, [*OSTI 2377355*](#) (2024).

CONFERENCES & WORKSHOPS

- 2025 & 2023 Superconducting Quantum Materials and Systems (SQMS) Center Conference, IL — *poster presentations*
- 2025 "Quantum Sensing and Precision Science Summer School" at Johns Hopkins, MD — *participant*
- 2025 & 2024 BASICS (Bay Area Strings, Information & Cosmology Symposium), CA — *participant*
- 2025 APS Global Summit March-April Meeting, Anaheim, CA — *talk*
- 2025 "Observables in Quantum Gravity: From Theory to Experiment" Aspen Center for Physics Conference, CO — *poster presentation*
- 2024 Vienna Quantum Foundations Conference at Institute for Quantum Optics and Quantum Information (IQOQI), Vienna, Austria — *poster presentation*
- 2023 "US Quantum Information Science Summer School" at Fermilab SQMS Center, IL — *participant*

HONORS & AWARDS

- Recipient of the national 2024 American Institute of Physics, Society of Physics Students "[Outstanding Undergraduate Research Award](#)", (\$2000 research travel, \$500 honorarium)

RELEVANT COURSES

- **Graduate courses:** quantum field theory, general relativity, quantum mechanics I and II
- **Electives:** quantum computing and information science, quantum and nonlinear optics
- **Mathematics:** abstract algebra, abstract linear algebra, complex analysis, differential equations

TECHNICAL SKILLS

- **General research:** programming, numerical simulations, data analysis, formal presentations
- **Fields:** quantum information theory, quantum metrology, quantum optics, nuclear physics, 2D holographic quantum gravity
- **Software:** Python, C++, Mathematica, Cirq, Qiskit, Geant4 Monte Carlo, GitHub, FRED Photon Engineering, Linux, Tex
- **Theoretical:** squeezed states, sub-SQL measurements, input-output theory, SYK model, JT gravity, holographic bulk reconstruction, thermal correlators, chord diagrams
- **Experimental:** superconducting qubits, beyond standard model searches, optomechanical quantum sensors, Radio-Frequency (RF) measurements, cryogenics, CCD and CMOS calorimeters